Experimental Learning and Innovation Environments, such as Living Labs, Field Labs, and Urban Innovation Labs, are increasingly used to connect multi-stakeholders in envisioning, creating, experimenting, learning, and trying out novel responses to diverse societal challenges. With designers facilitating the co-creation processes that take place in these labs, the design discipline plays an important role in these experimental environments. Applied Design Research in Living Labs and other Experimental Learning and Innovation Environments combines a focus on Experimental Learning and Innovation Environments (or Living Labs) with a focus on Applied Design Research. It offers an interdisciplinary perspective by bringing together diverse stakeholders from different disciplines. The book will adopt an interdisciplinary perspective, integrating insights from design, innovation, sociology, technology, and other relevant fields. It showcases real-world examples and case studies of successful Applied Design Research in Living Labs and focuses on design dilemmas that emerge while working in these Experimental Learning and Innovation Environments. The book explores the role of various stakeholders, including the roles that may play out during the development of Experimental Learning and Innovation Environments, and goes on to discuss the balance between fixed or fluid roles of these stakeholders and the polarity between working within one specific discipline versus working with various expertise or disciplines. Designers, government representatives, and researchers who apply a living lab approach to solve multi-stakeholder challenges in various fields by applying Urban Innovation Labs, Energy Living Labs, Mobility Living Labs, Health Living Labs, Education Living Labs, or Social Living Labs will find this book of interest.
LINK
Loneliness and social isolation are increasingly recognized as important challenges of our times. Inspired by research hinting at beneficial effects of interacting with nature on social connectedness and opportunities provided by ambient technology to simulate nature in a rich and engaging manner, this study explored to what extent digital nature projections can stimulate social aspirations and related emotions. To this end, participants (N = 96) were asked to watch, individually or in pairs, digital nature projections consisting of animated scenes which were either dense or spacious and depicting either wild or tended nature. Subsequently, they filled out a questionnaire comprising measures for social aspirations, awe and fascination. Results show that spacious scenes elicited significantly higher social aspiration and awe scores, especially when watching alone. Design implications are discussed for making digital nature accessible for people with limited access to real nature.
DOCUMENT
This paper describes how an urban commons is established on the Amsterdam market square Plein ’40-’45, to explain how an experimental learning environment can be a living lab for improving collaborative governance arrangements. We detail how this improvement is facilitated by an experimental learning environment that engages stakeholders in a process where practical solutions are developed and systemic obstacles are addressed and redesigned simultaneously. Our study is guided by the research question: How can an experimental learning environment develop practical solutions as a means to address systemic obstacles and improve collaborative governance arrangements?
LINK
Background: The environment affects children’s energy balance-related behaviors to a considerable extent. A context-based physical activity and nutrition school- and family-based intervention, named KEIGAAF, is being implemented in low socio-economic neighborhoods in Eindhoven, The Netherlands. The aim of this study was to investigate: 1) the effectiveness of the KEIGAAF intervention on BMI z-score, waist circumference, physical activity, sedentary behavior, nutrition behavior, and physical fitness of primary school children, and 2) the process related to the implementation of the intervention. Methods: A quasi-experimental, controlled study with eight intervention schools and three control schools was conducted. The KEIGAAF intervention consists of a combined top-down and bottom-up school intervention: a steering committee developed the general KEIGAAF principles (top-down), and in accordance with these principles, KEIGAAF working groups subsequently develop and implement the intervention in their local context (bottom-up). Parents are also invited to participate in a family-based parenting program, i.e., Triple P Lifestyle. Children aged 7 to 10 years old (grades 4 to 6 in the Netherlands) are included in the study. Effect evaluation data is collected at baseline, after one year, and after two years by using a child questionnaire, accelerometers, anthropometry, a physical fitness test, and a parent questionnaire. A mixed methods approach is applied for the process evaluation: quantitative (checklists, questionnaires) and qualitative methods (observations, interviews) are used. To analyze intervention effectiveness, multilevel regression analyses will be conducted. Content analyses will be conducted on the qualitative process data. Discussion: Two important environmental settings, the school environment and the family environment, are simultaneously targeted in the KEIGAAF intervention. The combined top-down and bottom-up approach is expected to make the intervention an effective and sustainable version of the Health Promoting Schools framework. An elaborate process evaluation will be conducted alongside an effect evaluation in which multiple data collection sources (both qualitative and quantitative) are used.
DOCUMENT
Background: The importance of clarifying goals and providing process feedback for student learning has been widely acknowledged. From a Self-Determination Theory perspective, it is suggested that motivational and learning gains will be obtained because in well-structured learning environments, when goals and process feedback are provided, students will feel more effective (need for competence), more in charge over their own learning (need for autonomy) and experience a more positive classroom atmosphere (need for relatedness). Yet, in spite of the growing theoretical interest in goal clarification and process feedback in the context of physical education (PE), little experimental research is available about this topic. Purpose: The present study quasi-experimentally investigated whether the presence of goal clarification and process feedback positively affects students’ need satisfaction and frustration. Method: Twenty classes from five schools with 492 seventh grade PE students participated in this quasi-experimental study. Within each school, four classes were randomly assigned to one of the four experimental conditions (n = 121, n = 117, n = 126 and n = 128) in a 2 × 2 factorial design, in which goal clarification (absence vs. presence) and process feedback (absence vs. presence) were experimentally manipulated. The experimental lesson consisted of a PE lesson on handstand (a relatively new skill for seventh grade students), taught by one and the same teacher who went to the school of the students to teach the lesson. Depending on the experimental condition, the teacher either started the lesson explaining the goals, or refrained from explaining the goals. Throughout the lesson the teacher either provided process feedback, or refrained from providing process feedback. All other instructions were similar across conditions, with videos of exercises of differential levels of difficulty provided to the students. All experimental lessons were observed by a research-assistant to discern whether manipulations were provided according to a condition-specific script. One week prior to participating in the experimental lesson, data on students’ need-based experiences (i.e. quantitatively) were gathered. Directly after students’ participation in the experimental lesson, data on students’ perceptions of goal clarification and process feedback, need-based experiences (i.e. quantitatively) and experiences in general (i.e. qualitatively) were gathered. Results and discussion: The questionnaire data and observations revealed that manipulations were provided according to the lesson-scripts. Rejecting our hypothesis, quantitative analyses indicated no differences in need satisfaction across conditions, as students were equally satisfied in their need for competence, autonomy and relatedness regardless of whether the teacher provided goal clarification and process feedback, only goal clarification, only process feedback or none. Similar results were found for need frustration. Qualitative analyses indicated that, in all four conditions, aspects of the experimental lesson made students feel more effective, more in charge over their own learning and experience a more positive classroom atmosphere. Our results suggest that under certain conditions, lessons can be perceived as highly need-satisfying by students, even if the teacher does not verbally and explicitly clarify the goals and/ or provides process feedback. Perhaps, students were able to self-generate goals and feedback based on the instructional videos.
DOCUMENT
Introduction: Illness Perceptions (IPs) may play a role in the management of persistent low back pain. The mediation and/or moderation effect of IPs on primary outcomes in physiotherapy treatment is unknown. Methods: A multiple single-case experimental design, using a matched care physiotherapy intervention, with three phases (phases A-B-A’) was used including a 3 month follow up (phase A’). Primary outcomes: pain intensity, physical functioning and pain interference in daily life. Analyzes: linear mixed models, adjusted for fear of movement, catastrophizing, avoidance, sombreness and sleep. Results: Nine patients were included by six different primary care physiotherapists. Repeated measures on 196 data points showed that IPs Consequences, Personal control, Identity, Concern and Emotional response had a mediation effect on all three primary outcomes. The IP Personal control acted as a moderator for all primary outcomes, with clinically relevant improvements at 3 month follow up. Conclusion: Our study might indicate that some IPs have a mediating or a moderating effect on the outcome of a matched care physiotherapy treatment. Assessing Personal control at baseline, as a relevant moderator for the outcome prognosis of successful physiotherapy management of persistent low back pain, should be further eplored.
DOCUMENT
This paper assesses wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers. An experimental set-up with sonic anemometers placed on top of the barrier in reference positions is realized. The effect on wind speed magnitude, inflow angle and turbulence intensity is analysed. The annual energy yield of a micro wind turbine is estimated and compared using data from a micro-wind turbine wind tunnel experiment and field data. Electrical energy costs are discussed as well as structural integration cost reduction and the potential energy yield could decrease costs. It was found that instantaneous wind direction towards the barrier and the height of observation play an influential role for the results. Wind speed increases in perpendicular flows while decreases in parallel flow, by +35% down to −20% from the reference. The azimuth of the noise barrier expressed in wind field rotation angles was found to be influential resulted in 50%–130% changes with respect to annual energy yield. A micro wind turbine (0.375 kW) would produce between 100 and 600 kWh annually. Finally, cost analysis with cost reductions due to integration and the energy yield changes due to the barrier, show a LCOE reduction at 60%–90% of the reference value. https://doi.org/10.1016/j.jweia.2020.104206
DOCUMENT
Post-earthquake structural damage shows that out-of-plane wall collapse is one of the most prevalent failure mechanisms in unreinforced masonry (URM) buildings. This issue is particularly critical in Groningen, a province located in the northern part of the Netherlands, where low-intensity ground shaking has occurred since 1991 due to gas extraction. The majority of buildings in this area are constructed using URM and were not designed to withstand earthquakes, as the area had never been affected by tectonic seismic activity before. Hence, the assessment of URM buildings in the Groningen province has become of high relevance.Out-of-plane failure mechanisms in brick masonry structures often stem from poor wall-to-wall, wall-to-floor or wall-to-roof connections that provide insufficient restraint and boundary conditions. Therefore, studying the mechanical behaviour of such connections is of prime importance for understanding and preventing damages and collapses in URM structures. Specifically, buildings with double-leaf cavity walls constitute a large portion of the building stock in the Groningen area. The connections of the leaves in cavity walls, which consist of metallic ties, are expected to play an important role. Regarding the wall-to-floor connections, the traditional way for URM structures in Dutch construction practice is either a simple masonry pocket connection or a hook anchor as-built connection, which are expected to be vulnerable to out-of-plane excitation. However, until now, little research has been carried out to characterise the seismic behaviour of connections between structural elements in traditional Dutch construction practice.This thesis investigates the seismic behaviour of two types of connections: wall-to-wall connections between cavity wall leaves and wall-to-floor connections between the masonry cavity wall and timber diaphragm, commonly found in traditional houses in the Groningen area. The research is divided into three phases: (1) inventory of existing buildings and connections in the Groningen area, (2) performance of experimental tests, and (3) proposal and validation of numerical and mechanical models. The thesis explores the three phases as follows:(i) An inventory of connections within URM buildings in the Groningen area is established. The inventory includes URM buildings of Groningen based on construction material, lateral load-resisting system, floor system, number of storeys, and connection details. Specific focus is given to the wall-to-wall and wall-to-floor connections in each URM building. The thickness of cavity wall leaves, the air gap between the leaves and the size and spacing of timber joists are key aspects of the inventory.(ii) Experimental tests are performed on the most common connection typologies identified in the inventory. This phase consists of two distinct experimental campaigns:o The first experimental campaign took place at the laboratory of the Delft University of Technology to provide a comprehensive characterisation of the axial behaviour of traditional metal tie connections in cavity walls. The campaign included a wide range of variations, such as two embedment lengths, four pre-compression levels, two different tie geometries, and five different testing protocols, including both monotonic and cyclic loading. The experimental results showed that the capacity of the wall tie connection is strongly influenced by the embedment length and the tie geometry, whereas the applied pre-compression and the loading rate do not have a significant influence.o The second experimental campaign has been carried out at the laboratory of the Hanze University of Applied Sciences to characterise the seismic behaviour of timber joist-masonry cavity wall connections, reproducing both as-built and strengthened conditions. Twenty-two unreinforced masonry wallets were tested, with different configurations, including two tie distributions, two pre-compression levels, two different as-built connections, and two different strengthening solutions. The experimental results highlighted the importance of cohesion and friction between joist and masonry since the type of failure mechanism (sliding of the joist or rocking failure of the masonry wallet) depends on the value of these two parameters. Additionally, the interaction between the joist and the wallet and the uplift of the latter activated due to rocking led to an arching effect that increased friction at the interface between the joist and the masonry. Consequently, the arching effect enhanced the force capacity of the connection.(iii) Mechanical and numerical models are proposed and validated against the performed experiments or other benchmarks. Mechanical and numerical models for the cavity wall tie and mechanical models for the timber joist-masonry connections were developed and verified by the experimental results to predict the failure mode and the strength capacity of the examined connections in URM buildings.o The mechanical model for the cavity wall tie connections considers six possible failures, namely tie failure, cone break-out failure, pull-out failure, buckling failure, piercing failure and punching failure. The mechanical model is able to capture the mean peak force and the failure mode obtained from the tests. After being calibrated against the available experiments, the proposed mechanical model is used to predict the performance of untested configurations by means of parametric analyses, including higher strength of mortar for calcium silicate brick masonry, different cavity depth, different tie embedment depth, and the use of solid bricks in place of perforated clay bricks.o The results of the experimental campaign on cavity wall ties were also utilised to calibrate a hysteretic numerical model representing the cyclic axial response of cavity wall tie connections. The proposed model uses zero-length elements implemented in OpenSees with the Pinching4 constitutive model to account for the compression-tension cyclic behaviour of the ties. The numerical model is able to capture important aspects of the tie response, such as strength degradation, unloading stiffness degradation, and pinching behaviour. The mechanical and numerical modelling approach can be easily adopted by practitioner engineers seeking to model the wall ties more accurately when assessing URM structures against earthquakes.o The mechanical model of timber-masonry connections examines two different failure modes: joist-sliding failure mode, including joist-to-wall interaction and rocking failure mode due to joist movement. Both mechanical models have been validated against the outcomes of the experimental campaigns conducted on the corresponding connections. The mechanical model is able to estimate each contribution of the studied mechanism. Structural engineers can use the mechanical model to predict the capacity of the connection for the studied failure modes.This research study can contribute to a better understanding of typical Groningen houses in terms of identifying the most common connections used at wall-to-wall and wall-to-floor connections in cavity walls, characterising the identified connections and proposing mechanical models for the studied connections.
DOCUMENT
The use of cleanrooms is increasing and the expectation is that this growth will continue in the coming decade. When compared to an average office building, cleanrooms consume large amounts of energy due to their high Air Change Rates (ACRs) and strict air conditioning requirements. Application of Demand Controlled Filtration (DCF) is a means to reduce the (fan) energy demand. The question is whether the air quality is compromised at reduced ACR and overpressure conditions in the non-operational hours of a cleanroom. In a cleanroom mock-up, experiments have been performed to investigate the particle concentration build-up for different cases with DCF, including an extreme case with zero ACR and zero pressure difference. For the DCF conditions and the specific case study, conditions for particle concentration outside the cleanroom, that may still provide high-quality Good Manufacturing Practices (GMP) conditions in the cleanroom, are derived from the results. Furthermore, it assumes DCF application via occupancy sensing, i.e. starting DCF 30 min after the last person left the cleanroom. When applying DCF for a normal workweek (production 08:00–17:00), fan energy savings higher than 70% can be obtained without compromising the air quality requirements under normal circumstances. DCF, in combination with a reduced pressure difference, therefore is regarded as a feasible solution to reduce the energy demand of cleanrooms when the personnel in the cleanroom are the main source of contamination. These results are obtained for the presented case study. Though assuming a conservative approach, confirmation of these outcomes for other cleanrooms is recommended.
DOCUMENT
Limited evidence is available about (non)-representativeness of participants in health-promoting interventions. The Dutch Healthy Primary School of the Future (HPSF)-study is a school-based study aiming to improve health through altering physical activity and dietary behaviour, that started in 2015 (registered in ClinicalTrials.gov on14-06-2016, NCT02800616). The study has a response rate of 60%. A comprehensive non-responder analysis was carried out, and responders were compared with schoolchildren from the region and the Netherlands using a cross-sectional design. External sources were consulted to collect non-responder, regional, and national data regarding relevant characteristics including sex, demographics, health, and lifestyle. The Chi-square test, Mann-Whitney U test, or Student's t-test were used to analyse differences.
DOCUMENT