For centuries, natural gas has been one of humanity’s main energy sources. The gas sector is still heavily reliant on natural gas production; however, as natural gas fields contain only a finite quantity of gas, its continued extraction is leading to the resource’s depletion. Furthermore, natural gas production has become a subject of debate, with many considering continued utilisation incompatible with the achievement of international and European climate goals. The need for alternative gases that are less damaging to the environment is becoming increasingly evident. Biomethane has shown itself to be a reliable alternative to natural gas, and if sourced and manufactured responsibly results in no new CO2 emissions. Another alternative, hydrogen, can, through the process of methanisation, be converted into synthetic natural gas (SNG). This chapter discusses the legal aspects of the production and use of biomethane, hydrogen and SNG.
LINK
In het hoofdstuk wordt ingegaan op de innovaties in de Europese gassector, met een speciale focus op de invoeding van groen gas (ook wel biomethaan) in het aardgassysteem. Er wordt een algemeen juridisch kader geschetst en er vindt een rechtsvergelijking plaats van de nationale rechtsordes aangaande Duitsland, Denemarken en Nederland.
LINK
The European Union is striving for a high penetration of renewable energy production in the future energy grid. Currently, the EU energy directive is aiming for 20% renewable energy production in the year 2020. In future plans the EU strives for approximately 80% renewable energy production by the year 2050. However, high penetration of wind and solar PV energy production, both centrally and de-centrally, can possibly destabilize the electricity grid. The gas grid and the flexibility of gas, which can be transformed in both electricity and heat at different levels of scale, can help integrate and balance intermittent renewable production. One possible method of assisting the electricity grid in achieving and maintaining balance is by pre-balancing local decentralized energy grids. Adopting flexible gas based decentralized energy production can help integrate intermittent renewable electricity production, short lived by-products (e.g. heat) and at the same time minimize transport of energy carriers and fuel sources. Hence, decentralized energy grids can possibly improve the overall efficiency and sustainability of the energy distribution system. The flexibility aforementioned, can potentially give gas a pivotal role in future decentralized energy grids as load balancer. However, there are a lot of potentially variables which effect a successful integration of renewable intermittent production and load balancing within decentralized energy systems. The flexibility of gas in general opens up multiple fuel sources e.g., natural gas, biogas, syngas etc. and multiple possibilities of energy transformation pathways e.g. combined heat and power, fuel cells, high efficiency boilers etc. Intermittent renewable production is already increasing exponentially on the decentralized level where load balancing is still lacking.
DOCUMENT
Aanleiding: De belangstelling voor gezonde en veilige voeding is groot. Bij de gezondheidseffecten van voeding spelen de darmen een cruciale rol. Verschillende soorten bedrijven hebben behoefte aan natuurgetrouwe testmodellen om de effecten van voeding op de darmen te bestuderen. Ze zijn vooral op zoek naar modellen waarvan de uitkomsten direct vertaalbaar zijn naar het doelorganisme (de mens of bijvoorbeeld het varken) en die niet gebruikmaken van kostbare en maatschappelijke beladen dierproeven. Doelstelling Het project 2-REAL-GUTS heeft als doel om twee innovatieve dierproefvrije darmmodellen geschikt te maken voor onderzoek naar voedingsconcepten en -ingrediënten. De twee darmmodellen die worden toegepast zijn darmorganoïden, minidarmorgaantjes bestaande uit stamcellen, en darmexplants bestaande uit hele stukjes darm verkregen uit relevante organismen. Beide modellen hebben potentieel heel uitgebreide toepassingsmogelijkheden en hebben ook grote voordelen ten opzichte van de huidige veelgebruikte cellijnen, omdat ze meerdere in de darm aanwezige celtypen bevatten en uit verschillende specifieke darmregio's te verkrijgen zijn. Gezamenlijk gaan de partners werken aan: 1) het aanpassen van de kweekomstandigheden zodat darmmodellen geschikt worden om de vragen van partners te beantwoorden; 2) het vaststellen van de toepassingsmogelijkheden van de darmmodellen door verschillende stoffen en producten te testen. Beoogde resultaten Kennisconferenties, publicaties en exploitatie van de modellen zullen zorgen voor het verspreiden van de opgedane kennis. Omdat het project gebruikmaakt van moderne, op de toekomst gerichte laboratoriumtechnieken (kweekmethoden met stamcellen en vitaal weefsel, moleculaire analyses en microscopie), leent het zich uitstekend om geïmplementeerd te worden in het hbo-onderwijs. Als spin-off zal het project dan ook voorzien in een specifieke, voor Nederland unieke hbo-minor op het gebied van stamcel- en aanverwante technologie (zoals organ-on-a-chiptechnologie).
Onze huidige voedselvoorziening wordt gekenmerkt door overmatig gebruik van bestrijdingsmiddelen zoals antibiotica, genetische manipulatie, overdadig veel transport, water en andere grondstoffen worden gebruikt en productieprocessen gebaseerd op fossiele brandstoffen. Ook wordt veel landbouwgrond dusdanig uitgeput dat de kwaliteit van de grond en de diversiteit sterk achteruit gaan. Gezonde en duurzaam geproduceerde voeding zou voor iedereen bereikbaar moeten zijn. Bovendien is er veel leegstand in verschillende regio’s, deze leegstand kan door middel van aquacultuur systemen zeer waardevol worden benut. Dit is de aanleiding geweest om te zoeken naar alternatieve mogelijkheden voor duurzame productie van voedsel binnen de agrifoodsector. Geïntegreerde aquacultuur systemen worden verwacht goed toepasbaar te zijn voor duurzame voedingsproductie. Deze systemen verminderen de afhankelijkheid van de huidige voedselvoorziening van chemie, olie en gas. Bovendien stimuleert het de lokale en regionale economie en schept het duurzame werkgelegenheid. De doelstelling is het sluiten van de materiaalstroomketen, het voorkomen van afvalstoffen en het stimuleren van grondstof besparing. De aanpak van dit project is daarom gericht op de transitie naar circulaire materiaalstromen waarbij hoogwaardig hergebruik van de materialen mogelijk is op een manier waarbij waarde wordt toegevoegd. Hierbij worden mogelijkheden verkent in het kader van de biobased economy en nieuwe business- en verdienmodellen van dergelijke geïntegreerde aquaculturen. De onderzoeksvraag voor A2FISH is welke circulaire business- en verdienmodellen er realiseerbaar zijn voor kansrijke geïntegreerde aquacultuursystemen binnen de agrifoodsector. Om die onderzoeksvraag uiteindelijk te kunnen beantwoorden, zijn een aantal deelvragen geformuleerd: • Welke aquacultuursystemen zijn kansrijk toepasbaar binnen de agrifoodsector? • Aan welke technische en economische aspecten moet een aquacultuursysteem voldoen om te komen tot kansrijke business- en verdienmodellen? • Welke soorten planten kunnen worden met waardevolle inhoudsstoffen kunnen worden gekweekt met de aquacultuursystemen? • Welke soorten gangbaar industrieel visvoer kan worden gefabriceerd uit reststromen uit de voedingsmiddelenindustrie en welke invloed heeft dit voer als bemesting op de waterkwaliteit? • Hoe ziet een vervolgtraject voor een geïntegreerd circulair aquacultuursysteem eruit en in hoeverre is dit anders dan voor gangbare alternatieven?
By transitioning from a fossil-based economy to a circular and bio-based economy, the industry has an opportunity to reduce its overall CO2 emission. Necessary conditions for effective and significant reductions of CO2-emissions are that effective processing routes are developed that make the available carbon in the renewable sources accessible at an acceptable price and in process chains that produce valuable products that may replace fossil based products. To match the growing industrial carbon demand with sufficient carbon sources, all available circular, and renewable feedstock sources must be considered. A major challenge for greening chemistry is to find suitable sustainable carbon that is not fossil (petroleum, natural gas, coal), but also does not compete with the food or feed demand. Therefore, in this proposal, we omit the use of first generation substrates such as sugary crops (sugar beets), or starch-containing biomasses (maize, cereals).
Lectorate, part of NHL Stenden Hogeschool