Glucocorticoids (GCs), such as prednisolone (PRED), are widely prescribed anti-inflammatory drugs, but their use may induce glucose intolerance and diabetes. GC-induced beta cell dysfunction contributes to these diabetogenic effects through mechanisms that remain to be elucidated. In this study, we hypothesized that activation of the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress could be one of the underlying mechanisms involved in GC-induced beta cell dysfunction. We report here that PRED did not affect basal insulin release but time-dependently inhibited glucose-stimulated insulin secretion in INS-1E cells. PRED treatment also decreased both PDX1 and insulin expression, leading to a marked reduction in cellular insulin content. These PRED-induced detrimental effects were found to be prevented by prior treatment with the glucocorticoid receptor (GR) antagonist RU486 and associated with activation of two of the three branches of the UPR. Indeed, PRED induced a GR-mediated activation of both ATF6 and IRE1/XBP1 pathways but was found to reduce the phosphorylation of PERK and its downstream substrate eIF2α. These modulations of ER stress pathways were accompanied by upregulation of calpain 10 and increased cleaved caspase 3, indicating that long term exposure to PRED ultimately promotes apoptosis. Taken together, our data suggest that the inhibition of insulin biosynthesis by PRED in the insulin-secreting INS-1E cells results, at least in part, from a GR-mediated impairment in ER homeostasis which may lead to apoptotic cell death.
AimsGenetic hypertrophic cardiomyopathy (HCM) is caused by mutations in sarcomere protein-encoding genes (i.e. genotype-positive HCM). In an increasing number of patients, HCM occurs in the absence of a mutation (i.e. genotype-negative HCM). Mitochondrial dysfunction is thought to be a key driver of pathological remodelling in HCM. Reports of mitochondrial respiratory function and specific disease-modifying treatment options in patients with HCM are scarce.Methods and resultsRespirometry was performed on septal myectomy tissue from patients with HCM (n = 59) to evaluate oxidative phosphorylation and fatty acid oxidation. Mitochondrial dysfunction was most notably reflected by impaired NADH-linked respiration. In genotype-negative patients, but not genotype-positive patients, NADH-linked respiration was markedly depressed in patients with an indexed septal thickness ≥10 compared with <10. Mitochondrial dysfunction was not explained by reduced abundance or fragmentation of mitochondria, as evaluated by transmission electron microscopy. Rather, improper organization of mitochondria relative to myofibrils (expressed as a percentage of disorganized mitochondria) was strongly associated with mitochondrial dysfunction. Pre-incubation with the cardiolipin-stabilizing drug elamipretide and raising mitochondrial NAD+ levels both boosted NADH-linked respiration.ConclusionMitochondrial dysfunction is explained by cardiomyocyte architecture disruption and is linked to septal hypertrophy in genotype-negative HCM. Despite severe myocardial remodelling mitochondria were responsive to treatments aimed at restoring respiratory function, eliciting the mitochondria as a drug target to prevent and ameliorate cardiac disease in HCM. Mitochondria-targeting therapy may particularly benefit genotype-negative patients with HCM, given the tight link between mitochondrial impairment and septal thickening in this subpopulation.
Inulin is a soluble dietary fibre, also classified as a prebiotic, extracted from chicory roots. The present study aimed to determine the effect of consumption of native chicory inulin on the stool frequency of middle-aged to older adults (40–75 years old) with uncomfortably but not clinically relevant low stool frequency, specified as two to four days without bowel movements per week. Two randomised, double blind, placebo-controlled crossover trials were conducted using similar protocols in differing populations. Trial A was conducted in Amsterdam, The Netherlands and subsequently Trial B was conducted in Newcastle, United Kingdom. Both trials involved supplementation for 5 weeks with 10 g per day of inulin or placebo, a washout period of 2 weeks, and then crossed over to receive the other treatment. In Trial B, faecal gut microbiota composition was assessed using 16S rRNA gene sequencing. In Trial A, which 10 volunteers completed, the stool frequency was significantly increased to an average 4.9 ± 0.23 (SEM) times per week during inulin periods versus 3.6 ± 0.25 in the periods with placebo (p = 0.01). In contrast, in Trial B which 20 volunteers completed, there was no significant effect of the inulin on stool frequency (7.5 ± 2.1 times per week with inulin, 8.1 ± 3.0 with placebo, p = 0.35). However, many subjects in Trial B had a stool frequency >5 per week also for the placebo period, in breach of the inclusion criteria. Combining the data of 16 low stool frequency subjects from Trials A and B showed a significant effect of inulin to increase stool frequency from 4.1 to 5.0 per week (p = 0.032). Regarding secondary outcomes, stool consistency was significantly softer with inulin treatment compared to placebo periods, it increased 0.29 on the Bristol stool scale (p = 0.008) when data from all subjects of Trials A and B were combined. No other differences in bowel habit parameters due to inulin consumption were significant. None of the differences in specific bacterial abundance, alpha or beta diversity were significant, however the trends were in directions consistent with published studies on other types of inulin. We conclude that 10 g per day of native chicory inulin can increase stool frequency in subjects with low stool frequency.
MULTIFILE