The application of DC grids is gaining more attention in office applications. Especially since powering an office desk would not require a high power connection to the main AC grid but could be made sustainable using solar power and battery storage. This would result in fewer converters and further advanced grid utilization. In this paper, a sustainable desk power application is described that can be used for powering typical office appliances such as computers, lighting, and telephones. The desk will be powered by a solar panel and has a battery for energy storage. The applied DC grid includes droop control for power management and can either operate stand-alone or connected to other DC-desks to create a meshed-grid system. A dynamic DC nano-grid is made using multiple self-developed half-bridge circuit boards controlled by microcontrollers. This grid is monitored and controlled using a lightweight network protocol, allowing for online integration. Droop control is used to create dynamic power management, allowing automated control for power consumption and production. Digital control is used to regulate the power flow, and drive other applications, including batteries and solar panels. The practical demonstrative setup is a small-sized desktop with applications built into it, such as a lamp, wireless charging pad, and laptop charge point for devices up to 45W. User control is added in the form of an interactive remote wireless touch panel and power consumption is monitored and stored in the cloud. The paper includes a description of technical implementation as well as power consumption measurements.
DOCUMENT
Like the professionals, design students tend to avoid the complexity of the user context, and moral issues are largely overlooked. This inspired us to explore whether we could engage design students in thinking about moral issues by exploring different ethical frameworks in their designing. As a case environment we chose smart-grid product service combinations. In this paper we first discuss the ethical frameworks of four selected philosophers’: Plato, Rousseau, Kant, & Mill. Then we will describe the student design process, the resulting four smart grid service concepts and the user insights that came from a user evaluation. We discuss how this approach allowed the students to get insights in their own ethical stance and how they allowed users to reflect on possible futures. We also discuss how these ‘probing’ concepts were used within the larger smart grid project.
DOCUMENT
Combining electric cars with utility services seems to be a natural fit and holds the promise to tackle various mobility as well as electricity challenges at the same time. So far no viable business model for vehicle-to-grid technology has emerged, raising the question which characteristics a vehicle-to-grid business model should have. Drawing on an exploratory study amongst 189 Dutch consumers this study seeks to understand consumer preferences in vehicle-to-grid business models using conjoint analysis, factor analysis and cluster analysis. The results suggest that consumers prefer private ownership of an EV and a bidirectional charger instead of community ownership of bidirectional charger, they prefer utility companies instead of car companies as the aggregator and they require home and public charging. The most salient attributes in a V2G business model seem to be functional rather than financial or social. The customer segment with the highest willingness to adopt V2G prefers functional attributes. Based on the findings, the study proposes a business model that incorporates the derived preferences
DOCUMENT