Innovation is crucial for higher education to ensure high-quality curricula that address the changing needs of students, labor markets, and society as a whole. Substantial amounts of resources and enthusiasm are devoted to innovations, but often they do not yield the desired changes. This may be due to unworkable goals, too much complexity, and a lack of resources to institutionalize the innovation. In many cases, innovations end up being less sustainable than expected or hoped for. In the long term, the disappointing revenues of innovations hamper the ability of higher education to remain future proof. Against the background of this need to increase the success of educational innovations, our colleague Klaartje van Genugten has explored the literature on innovations to reveal mechanisms that contribute to the sustainability of innovations. Her findings are synthesized in this report. They are particularly meaningful for directors of education programs, curriculum committees, educational consultants, and policy makers, who are generally in charge of defining the scope and set up of innovations. Her report offers a comprehensive view and provides food for thought on how we can strive for future-proof and sustainable innovations. I therefore recommend reading this report.
DOCUMENT
BackgroundThe world’s population is aging, and with aging population comes an increase of chronic diseases and multimorbidity. At the same time a shortfall of trained health care professionals is anticipated. This raises questions on how to provide the best possible care. The use of Information and communication technology (ICT) and e-health has the potential to address the challenges that healthcare is facing. ICT applications and e-health, such as videophones, telemedicine and mobile devices, can benefit the healthcare system. Nonetheless, ICT is not used to its full potential. One of the key factors is the low adoption rate by nursing professionals. The nursing profession is characterized by teamwork and interdisciplinary collaboration. Nurses often work in nursing teams and collaboration between different disciplines is necessary for providing health care. Thus, collaboration is necessary when implementing ICT innovations.MethodsA systematic literature review was conducted in online databases PubMEd, CINAHL and IEEE, using key words related to innovation, nursing teams and adoption.ResultsThe result of the systematic review is that little is known about the relation between ICT adoption by nurses and the nature of collaboration by nurses in teams and in interdisciplinary networks. This leads to further research questions and a need for further research in this subject.
DOCUMENT
This study explores the evaluation of research pathways of self-management health innovations from discovery to implementation in the context of practice-based research. The aim is to understand how a new process model for evaluating practice-based research provides insights into the implementation success of innovations. Data were collected from nine research projects in the Netherlands. Through document analysis and semi-structured interviews, we analysed how the projects start, evolve, and contribute to the healthcare practice. Building on previous researchevaluation approaches to monitor knowledge utilization, we developed a Research Pathway Model. The model’s process character enables us to include and evaluate the incremental work required throughout the lifespan of an innovation project and it helps to foreground that innovation continues during implementation in real-life settings. We found that in each researchproject, pathways are followed that include activities to explore a new solution, deliver a prototype and contribute to theory. Only three projects explored the solution in real life and included activities to create the necessary changes for the solutions to be adopted. These three projects were associated with successful implementation. The exploration of the solution in a real-life environment in which users test a prototype in their own context seems to be a necessaryresearch activity for the successful implementation of self-management health innovations.
LINK
In order to accept and implement technology in a successful manner, not only determinants (acceptance barriers or facilitators) related to individual persons, for instance, health care providers as well as health care recipients, are important. Also interpersonal relationships on the work floor as well as the readiness and support of the organization itself are involved in the process of uptake of innovations. The Normalization Process Theory explains how this can be understood. The Technology Adoption Readiness Scale (TARS), developed based on this theory, offers a tool to diagnose the opportunities and challenges in health care organizations with respect to the implementation of certain technology- or eHealth applications. In order to guide the process of large scale implementation of technological innovations, also a pre implementation diagnosis is useful. This diagnosis, when provided by a “neutral party” has proved to be helpful for monitoring, guiding and thus supporting the implementation process of technological innovations in health care settings.
DOCUMENT
Background Literature on self-management innovations has studied their characteristics and position in healthcare systems. However, less attention has been paid to factors that contribute to successful implementation. This paper aims to answer the question: which factors play a role in a successful implementation of self-management health innovations? Methods We conducted a narrative review of academic literature to explore factors related to successful implementation of self-management health innovations. We further investigated the factors in a qualitative multiple case study to analyse their role in implementation success. Data were collected from nine self-management health projects in the Netherlands. Results Nine factors were found in the literature that foster the implementation of self-management health innovations: 1) involvement of end-users, 2) involvement of local and business partners, 3) involvement of stakeholders within the larger system, 4) tailoring of the innovation, 5) utilisation of multiple disciplines, 6) feedback on effectiveness, 7) availability of a feasible business model, 8) adaption to organisational changes, and 9) anticipation of changes required in the healthcare system. In the case studies, on average six of these factors could be identified. Three projects achieved a successful implementation of a self-management health innovation, but only in one case were all factors present. Conclusions For successful implementation of self-management health innovation projects, the factors identified in the literature are neither necessary nor sufficient. Therefore, it might be insightful to study how successful implementation works instead of solely focusing on the factors that could be helpful in this process.
LINK
De Regiegroep van de topsector Life Sciences & Health wil een impuls geven aan initiatieven die praktijkgericht onderzoek op het gebied van Health betreffen. De redenen hiervoor zijn de relatief bescheiden positie van Health vergeleken bij de Life Sciences in de eerdere agendering onder de topsector en de verwachting dat praktijkgericht onderzoek door hogescholen een substantiële bijdrage kan leveren aan de doelstellingen onder het topsectorenbeleid. Daarom is opdracht gegeven tot het opstellen van een agenda voor praktijkgericht onderzoek “Health”. Deze agenda moet leiden tot samenwerking met een solide economische component tussen hogescholen, eventuele andere kennisinstellingen en publieke en private partijen uit de beroepspraktijk. De Agenda Praktijkgericht Onderzoek Health is ingedeeld in vier overkoepelende thema’s (A - D) waarop het onderzoek van hogescholen zich zou moeten richten. Binnen elk thema zijn onderwerpen benoemd die op basis van deze verkenning prioriteit verdienen.
DOCUMENT
This study explores the evaluation of research pathways of self-management health innovations from discovery to implementation in the context of practice-based research. The aim is to understand how a new process model for evaluating practice-based research provides insights into the implementation success of innovations. Data were collected from nine research projects in the Netherlands. Through document analysis and semi-structured interviews, we analysed how the projects start, evolve, and contribute to the healthcare practice. Building on previous research evaluation approaches to monitor knowledge utilization, we developed a Research Pathway Model. The model’s process character enables us to include and evaluate the incremental work required throughout the lifespan of an innovation project and it helps to foreground that innovation continues during implementation in real-life settings. We found that in each research project, pathways are followed that include activities to explore a new solution, deliver a prototype and contribute to theory. Only three projects explored the solution in real life and included activities to create the necessary changes for the solutions to be adopted. These three projects were associated with successful implementation. The exploration of the solution in a real-life environment in which users test a prototype in their own context seems to be a necessary research activity for the successful implementation of self-management health innovations.
MULTIFILE
In deze literatuurstudie werden vier databanken doorzocht met behulp van trefwoorden zoals chronic disease, e-health, factors en suggested interventions. Kwalitatieve, kwantitatieve en mixed methods-studies werden meegenomen. Uit de data van de 22 artikelen die werden geïncludeerd in de studie, blijken leeftijd, geslacht, inkomen, opleidingsniveau, etnische achtergrond en woonplaats (stad of platteland) in meer of mindere mate van invloed te zijn op het gebruik van e-health. Het artikel is een Nederlandstalige samenvatting van het artikel: Reiners, Sturm, Bouw & Wouters (2019) uit Int J Environ Res Public Health 2019;16(4)
DOCUMENT
In health care, the use of nursing technological innovations, particularly technological products, is rapidly increasing; however, these innovations do not always align with nursing practice. An explanation for this issue could be that nursing technological innovations are developed and implemented with a top-down approach, which could subsequently limit the positive impact on practice. Cocreation with stakeholders such as nurses can help address this issue. Nowadays, health care centers increasingly encourage stakeholder participation, which is known as a bottom-up cocreation approach. However, little is known about the experience of nurses and their managers with this approach and the innovations it results in within the field of nursing care.
DOCUMENT
Transitions in health care and the increasing pace at which technological innovations emerge, have led to new professional approach at the crossroads of health care and technology. In order to adequately deal with these transition processes and challenges before future professionals access the labour market, Fontys University of Applied Sciences is in a transition to combining education with interdisciplinary practice-based research. Fontys UAS is launching a new centre of expertise in Health Care and Technology, which is a new approach compared to existing educational structures. The new centre is presented as an example of how new initiatives in the field of education and research at the intersection of care and technology can be shaped.
DOCUMENT