Unhealthy lifestyle behaviours are common among vocational students and increase their risk of non-communicable diseases later in life. Unfortunately, only a limited number of school-based healthy lifestyle interventions have been developed for vocational students. Moreover, there is no evidence that these interventions are effective. They have often been developed by professionals without involving students and therefore may not align with the target group’s perceptions and needs. We used a participatory design approach to develop an intervention to promote healthy physical activity and dietary behaviours, in co-creation with vocational students. ‘Contextmapping’ was used to assess student conscious and subconscious motivation for a healthy lifestyle (n = 27, ages 17-26 years). All sessions and interviews were recorded and transcribed. The transcripts were analysed using framework analysis. Contextual characteristics that influenced student lives were their peers, family and short-term motives like earning money, being cool and looking good. In addition, they often had a passive attitude towards daily life, were unaware of their health illiteracy and being healthy was a goal for the distant future. These findings led to four design concepts that converged in a peer-led healthy lifestyle intervention that includes a social media campaign and activities to demonstrate and practice specific health behaviours among vocational students.
Living labs are complex multi-stakeholder collaborations that often employ a usercentred and design-driven methodology to foster innovation. Conventional management tools fall short in evaluating them. However, some methods and tools dedicated to living labs' special characteristics and goals have already been developed. Most of them are still in their testing phase. Those tools are not easily accessible and can only be found in extensive research reports, which are difficult to dissect. Therefore, this paper reviews seven evaluation methods and tools specially developed for living labs. Each section of this paper is structured in the following manner: tool’s introduction (1), who uses the tool (2), and how it should be used (3). While the first set of tools, namely “ENoLL 20 Indicators”, “SISCODE Self-assessment”, and “SCIROCCO Exchange Tool” assess a living lab as an organisation and are diving deeper into the organisational activities and the complex context, the second set of methods and tools, “FormIT” and “Living Lab Markers”, evaluate living labs’ methodologies: the process they use to come to innovations. The paper's final section presents “CheRRIes Monitoring and Evaluation Tool” and “TALIA Indicator for Benchmarking Service for Regions”, which assess the regional impact made by living labs. As every living lab is different regarding its maturity (as an organisation and in its methodology) and the scope of impact it wants to make, the most crucial decision when evaluating is to determine the focus of the assessment. This overview allows for a first orientation on worked-out methods and on possible indicators to use. It also concludes that the existing tools are quite managerial in their method and aesthetics and calls for designers and social scientists to develop more playful, engaging and (possibly) learning-oriented tools to evaluate living labs in the future. LinkedIn: https://www.linkedin.com/in/overdiek12345/ https://www.linkedin.com/in/mari-genova-17a727196/?originalSubdomain=nl
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Dutch society faces major future challenges putting populations’ health and wellbeing at risk. An ageing population, increase of chronic diseases, multimorbidity and loneliness lead to more complex healthcare demands and needs and costs are increasing rapidly. Urban areas like Amsterdam have to meet specific challenges of a growing and super divers population often with a migration background. The bachelor programs and the relating research groups of social work and occupational therapy at the Amsterdam University of Applied Sciences innovate their curricula and practice-oriented research by multidisciplinary and cross-domain approaches. Their Centres of Expertise foster interprofessional research and educational innovation on the topics of healthy ageing, participation, daily occupations, positive health, proximity, community connectedness and urban innovation in a social context. By focusing on senior citizens’ lives and by organizing care in peoples own living environment. Together with their networks, this project aims to develop an innovative health promotion program and contribute to the government missions to promote a healthy and inclusive society. Collaboration with stakeholders in practice based on their urgent needs has priority in the context of increasing responsibilities of local governments and communities. Moreover, the government has recently defined social base as being the combination of citizen initiatives, volunteer organizations , caregivers support, professional organizations and support of vulnerable groups. Kraktie Foundations is a community based ethno-cultural organization in south east Amsterdam that seeks to research and expand their informal services to connect with and build with professional care organizations. Their aim coincides with this project proposal: promoting health and wellbeing of senior citizens by combining intervention, participatory research and educational perspectives from social work, occupational therapy and hidden voluntary social work. With a boundary crossing innovation of participatory health research, education and Kraktie’s work in the community we co-create, change and innovate towards sustainable interventions with impact.
“Being completely circular by 2050” that is the goal for the Dutch economy. The transition towards the circular and biobased economy for energy and materials is essential to reach that goal. Sustainably produced materials based on renewable sources like biomass should be developed. One of the industries which recognizes the need for transition is the building industry. Currently, there are a couple of biobased building concepts available which claim to be more than 95% biobased. Since the current resins and adhesives, used to produce panel boards (like cross laminated timber (CLT)), are all produced synthetically, one of the missing links for the building industry to become 100% biobased are biobased resins and adhesives (and binders). In literature, there are several solutions described for resins/adhesives/binders which are based on the biomolecules lignin and cellulose which are abundantly present in fibrous biomass, but these products are not (yet) available on the market. At the same time, there are several fibrous biomass side streams available for which higher added value applications are demanded. These side streams are perfect sources of lignin and cellulose and are, therefore, very suitable sources to form the basis for biobased resins/adhesives/binders. However, they need modification to obtain the desired functionalities. The problem statement of this project, based on the request for valorization of fibrous side streams and the need for biobased building materials, is “How can we valorize fibrous biomass (side streams) into biobased building applications.” This problem statement is translated into the research goal. The aim of this research is to develop a biobased resin, adhesive or binder for the production of panel boards based on the side streams of fibrous/lignocellulosic biomass which meets the requirement of the building industry with respect to VOC emissions, and water resistance so that it contributes to a healthy living environment.