gains and internal gains from appliances,heat gains from occupants are an importantsource contributing to space heating indomestic buildings. It is necessary toconsciously consider all of these heat gainswhen aiming at accurately estimating theheat loss coefficient (HLC) of a building.Whilst sensor technology and algorithms areavailable to quantify the contribution of theheating system, solar gains and electricalappliances, the accurate estimation of thesensible heat gain from occupants ischallenging due to its stochastic character.
MULTIFILE
Lessons learned on the progress towards 4th generation district heating (4DHC) are presented from 6 pilot implementation projects in the UK, Ireland, Belgium, France, and the Netherlands (HeatNet project). The pilots have implemented the infrastructure for district heating from various (waste) heat and renewable sources to reduce CO2 emissions. With the development of long term road maps, progress is made towards the role out of 4DHC in the regions. The pilots have a different level of experience with district heating and transnational learning is specifically addressed. Purpose of the evaluation of the pilots is to give local authorities insight into barriers and solutions and the way they are closely linked to stakeholders in their geographical, politicaland cultural context in NWE. To do this, the financial, regulatory and organisational barriers the pilots face and possible solutions that were shared between the pilots are analysed in the context of system innovation. Differences in national and regional contexts have been analysed to be able to generalise solutions to a level they can be used in a different context. We will confront the pilot’s development with best and worst practice from literature and score Key Success Factors.
MULTIFILE
The sustainable energy transition asks for new and innovative solutions in the way society, government, energy market and clients (end users) approach energy distribution and consumption. The energy transition provides great opportunity to develop innovative solutions where in the dense built environment district heating and cooling are being strongly advocated.Traditionally, the energy systems in urban districts have been regulated by a top-down approach. With the rise of local and distributed sustainable sources for urban heating and cooling, the complexity of the heat/cold chain is increasing. Therefore, an organic and bottom-up approach is being requested, where the public authorities have a facilitating and/or directive role. There is a need for a new and open framework for collaboration between stakeholders. A framework that provides insight into the integral consideration of heating and cooling solutions on district level in terms of: organisation, technology and economy (OTE). This research therefore focuses on developing this integral framework towards widely supported heating and cooling solutions among district stakeholders.Through in-depth interviews, workshops and focus groups discussions, relevant stakeholders in local district heating/cooling of varying backgrounds and expertise have been consulted. This has led to two pillars in a framework. Firstly the definition of Key Success Factors and Key Performance Indicators to evaluate technical solutions in light of the respective context. Secondly, an iterative decision making process among district stakeholders where technical scenarios, respective financial business cases and market organisation are being negotiated. Fundamental proposition of the framework is the recurrent interaction between OTE factors throughout the entire decision making process. In order to constantly assure broad-based support, the underlying nature of possible barriers for collaboration are identified in a stakeholder matrix, informing a stakeholder strategy. It reveals an open insight of the interests, concerns, and barriers among all stakeholders, where solutions can be developed effectively.
Lightweight, renewable origin, mild processing, and facile recyclability make thermoplastics the circular construction materials of choice. However, in additive manufacturing (AM), known as 3D printing, mass adoption of thermoplastics lags behind. Upon heating into the melt, particles or filaments fuse first in 2D and successively in 3D, realizing unprecedented geometrical freedom. Despite a scientific understanding of fusion, industrial consortium experts are still confronted with inferior mechanical properties of fused weld interfaces in reality. Exemplary is early mechanical failure in patient-specific and biodegradable medical devices based on Corbion’s poly(lactides), and more technical constructs based on Mitsubishi’s poly(ethylene terephthalate), PET. The origin lies in contradictory low rate of polymer diffusion and entangling, and too high rate of crystallization that is needed to compensate insufficient entangling. Knowing that Zuyd University in close collaboration with Maastricht University has eliminated these contradictory time-scales for PLA-based systems, Corbion and Mitsubishi contacted Zuyd with the question to address and solve their problem. In previous research it has been shown that interfacial co-crystallization of alternating depositioned opposite stereo-specific PLA grades resulted in strengthening of the interface. To promote mass adoption of thermoplastics AM industries, the innovation question has been phrased as follows: What is a technically scalable route to induce toughness in additively manufactured thermoplastics? High mechanical performance translates into an intrinsic brittle to tough transition of stereocomplex reinforced AM products, focusing on fused deposition modeling. Taking the professional request on biocompatibility, engineering performance and scalability into account, the strategies in lowering the yield stress and/or increasing the network strength comprise (i) biobased and biocompatible plasticizers for stereocomplexed poly(lactide), (ii) interfacial co-crystallization of intrinsically tough polyester based materials formulations, and (iii) in-situ interfacial transesterification of recycled PET formulations.
Residential electricity distribution grid capacityis based on the typical peak load of a house and the loadsimultaneity factor. Historically, these values have remainedpredictable, but this is expected to change due to increasingelectric heating using heat pumps and rooftop solar panelelectricity generation. It is currently unclear how this increasein electrification will impact household peak load and loadsimultaneity, and hence the required grid capacity of residentialelectricity distribution grids. To gain better insight, transformerand household load measurements were taken in an all-electricneighborhood over a period of three years. These measurementswere analyzed to determine how heat pumps and solar panelswill alter peak load and load simultaneity and hence gridcapacity design parameters. Moreover, the potential for smartgrids to reduce peak loads and load simultaneity, and hencereduce required grid capacities, was examined.