Few studies have investigated staying intentions and house attachment of residents who are confronted with physical damage to their dwelling in a risk area. This paper examines whether and how homeowners who are confronted with human-induced risks and the consequences of gas extraction in the Dutch Groningen rural earthquake region are attached to their damaged dwellings and why they stay. A content analysis was performed on 92 published interviews with homeowners of damaged dwellings. Additionally, three semi-structured interviews were held with key journalists and a homeowner. The results show that the homeowners’ staying intentions are interrelated with their house attachment; moreover, their awareness of their house attachment arises precisely because of the damage. We identify five subdimensions of physical and social house attachment, related to family history, heritage, (agricultural) business, personal refurbishment, and cohabiting family members, which make homeowners want to stay. The family history is especially mentioned by mid-to-later life homeowners, while some younger homeowners emphasize social house attachment to their children.We conclude that a homeowner's decision to stay in a damaged dwelling is a continuous cycle of reconsideration and renegotiation, punctuated by potential new risks and damages influencing the house attachment and staying intentions. Based on the found dimensions of house attachment, policymakers in risk areas could apply different approaches to homeowners in case of damage repair, rebuilding, or relocation plans, as homeowners - even those with damaged dwellings - may prefer to stay.
DOCUMENT
To facilitate energy transition, in several countries regulators have devised ‘regulatory sandboxes’ to create a participatory experimentation environment for exploring revision of energy law. These sandboxes allow for a two-way regulatory dialogue between an experimenter and an approachable regulator to innovate regulation and enable new socio-technical arrangements. We focus on the Dutch Energy Experimentation Decree (EED) that invites homeowners’ associations and energy cooperatives to propose projects prohibited by extant regulation. In order to localize, democratize and decentralize energy provision, local experimenters can, for instance, organise peer-to-peer supply and determine their own tariffs for energy transport.
DOCUMENT
Although there is an array of technical solutions available for retrofitting the building stock, the uptake of these by owner‐occupants in home improvement activities is lagging. Energy performance improvement is not included in maintenance, redecoration, and/or upgrading activities on a scale necessary to achieve the CO2 reduction aimed for in the built environment. Owner‐occupants usually adapt their homes in response to everyday concerns, such as having enough space available, increasing comfort levels, or adjusting arrangements to future‐proof their living conditions. Home energy improvements should be offered accordingly. Retrofit providers typically offer energy efficiency strategies and/or options for renewable energy generation only and tend to gloss over home comfort and homemaking as key considerations in decision‐making for home energy improvement. In fact, retrofit providers struggle with the tension between customisation requirements from private homeowners and demand aggregation to streamline their supply chains and upscale their retrofit projects. Customer satisfaction is studied in three different Dutch approaches to retrofit owner‐occupied dwellings to increase energy efficiency. For the analysis, a customer satisfaction framework is used that makes a distinction between satisfiers, dissatisfiers, criticals, and neutrals. This framework makes it possible to identify and structure different relevant factors from the perspective of owner‐occupants, allows visualising gaps with the professional perspective, and can assist to improve current propositions.
MULTIFILE
This article deals with the question how renovate the houses in the Netherlands with taking into account the future need for modifications.
MULTIFILE
One of the most complex and urgent challenges in the energy transition is the large-scale refurbishment of the existing housing stock in the built environment. In order to comply with the goals of the Paris convention, the aim is to live “energy-neutral,” that is, a dwelling should produce as much sustainable energy as it consumes on a yearly basis. This means that millions of existing houses need to undergo a radical energy retrofit. In the next 30 years, all dwellings should be upgraded to nearly zero-energy buildings, which is a challenge to accomplish for a reasonable price. Across the EU, many projects have developed successful approaches to the improvement of building technologies and processes, as well a better involvement of citizens. It is important to compare and contrast such approaches and disseminate lessons learned. In practice, it is crucial to raise the level of participation of inhabitants in neighborhood renovation activities. Therefore, the central question of this issue is: How can we increase the involvement of tenants and homeowners into this radical energy renovation?
DOCUMENT
One of the most complex and urgent challenges in the energy transition is the large‐scale refurbishment of the existing housing stock in the built environment. In order to comply with the goals of the Paris convention, the aim is to live “energy‐neutral,’’ that is, a dwelling should produce as much sustainable energy as it consumes on a yearly basis. This means that millions of existing houses need to undergo a radical energy retrofit. In the next 30 years, all dwellings should be upgraded to nearly zero‐energy buildings, which is a challenge to accomplish for a reasonable price. Across the EU, many projects have developed successful approaches to the improvement of building technologies and processes, as well a better involvement of citizens. It is important to compare and contrast such approaches and disseminate lessons learned.In practice, it is crucial to raise the level of participation of inhabitants in neighborhood renovation activities. Therefore,the central question of this issue is: How can we increase the involvement of tenants and homeowners into this radicalenergy renovation?
LINK
The goal of a local energy community (LEC) is to create a more sustainable, resilient, and efficient energy system by reducing dependence on centralized power sources and enabling greater participation and control by local communities and individuals. LEC requires transformations in local energy systems, and strongly depends on the preferences and actions of the local actors involved. The necessity for extensive stakeholder involvement adds complexity to the energy transition, posing a significant challenge for all involved parties. The municipality of Leidschendam-Voorburg has committed to the national decision for energy transition. It has taken a strategic approach by proceeding De Heuvel/Amstelwijk as the pioneer in this initiative, leading the way for other neighborhoods to follow. It is crucial to devise strategies that effectively facilitate stakeholder engagement. To this end, a thorough stakeholder analysis is needed. Such an analysis can focus on the identification of key stakeholders, their interests, their influence, and their behavioral characteristics in relation to the energy transition. Additionally, it's crucial to uncover the challenges encountered by these stakeholders and finally develop appropriate strategies to address them hence enhance their engagement. This thesis begins with an introduction to the research background, including a presentation of the case study and a statement of the problem identified in the field, followed by the research questions underpinning the study. A thorough literature review ensues, providing a robust synthesis of existing research relating to stakeholder engagement in LECs, with a view to expediting energy transitions. The literature review not only forms the foundation for the research methods adopted in this study but also promotes in the construction of the conceptual model. Subsequent to the literature review, the research method is detailed. The filed research is conducted in five steps: Step 1 - identification of stakeholders, Step 2 - prioritization of stakeholders, Step 3 - interviewing, Step 4 - data analysis, including stakeholder profiling with mapping and addressing challenges, and finally, Step 5 - proposal of strategies for stakeholder engagement enhancement based on the expected and current levels of stakeholders engagement. This research collects necessary information to understand the profiles of stakeholders in De Heuvel/Amstelwijk, tackle challenges faced by different stakeholders, propose strategies to increase stakeholders engagement. It not only aims to enrich the depth of theoretical knowledge on the subject matter but also strives to aid in the development of a localized energy strategy that is optimally suited for the De Heuvel/Amstelwijk neighborhood as good example for other neighborhoods.
DOCUMENT
To facilitate energy transition, in several countries regulators have devised ‘regulatory sandboxes’ to create a participatory experimentation environment for exploring revision of energy law. These sandboxes allow for a two-way regulatory dialogue between an experimenter and an approachable regulator to innovate regulation and enable new socio-technical arrangements. However, these experiments do not take place in a vacuum but need to be formulated and implemented in a multi-actor, polycentric decision-making system through collaboration with the regulator but also energy sector incumbents such as the distribution system operator. We are, therefore, exploring new roles and power division changes in the energy sector as a result of such a regulatory sandbox. We research the Dutch Energy Experimentation Decree (EED) that invites homeowners’ associations and energy cooperatives to propose projects prohibited by extant regulation. In order to localize, democratize and decentralize energy provision, local experimenters can, for instance, organise peer-to-peer supply and determine their own tariffs for energy transport. Theoretically, we rely on Ostrom’s concept of polycentricity to study the dynamics between actors involved in and engaging with the participatory experiments. Empirically, we examine 4 approved EED experiments through interviews and document analysis. Our conclusions focus on the potential and limitations of bottom-up, participatory innovation in a polycentric system. The most important lessons are that a more holistic approach to experimentation, inter-actor alignment, providing more incentives, and expert and financial support would benefit bottom-up participatory innovation.
LINK
DOCUMENT