Light profoundly impacts many aspects of human physiology and behaviour, including the synchronization of the circadian clock, the production of melatonin, and cognition. These effects of light, termed the non-visual effects of light, have been primarily investigated in laboratory settings, where light intensity, spectrum and timing can be carefully controlled to draw associations with physiological outcomes of interest. Recently, the increasing availability of wearable light loggers has opened the possibility of studying personal light exposure in free-living conditions where people engage in activities of daily living, yielding findings associating aspects of light exposure and health outcomes, supporting the importance of adequate light exposure at appropriate times for human health. However, comprehensive protocols capturing environmental (e.g., geographical location, season, climate, photoperiod) and individual factors (e.g., culture, personal habits, behaviour, commute type, profession) contributing to the measured light exposure are currently lacking. Here, we present a protocol that combines smartphone-based experience sampling (experience sampling implementing Karolinska Sleepiness Scale, KSS ratings) and high-quality light exposure data collection at three body sites (near-corneal plane between the two eyes mounted on spectacle, neck-worn pendant/badge, and wrist-worn watch-like design) to capture daily factors related to individuals’ light exposure. We will implement the protocol in an international multi-centre study to investigate the environmental and socio-cultural factors influencing light exposure patterns in Germany, Ghana, Netherlands, Spain, Sweden, and Turkey (minimum n = 15, target n = 30 per site, minimum n = 90, target n = 180 across all sites). With the resulting dataset, lifestyle and context-specific factors that contribute to healthy light exposure will be identified. This information is essential in designing effective public health interventions.
MULTIFILE
Learning by creating qualitative representations is a valuable approach to learning. However, modelling is challenging for students, especially in secondary education. Support is needed to make this approach effective. To address this issue, we explore automated support provided to students while they create their qualitative representation. This support is generated form a reference model that functions as a norm. However, the construction of a reference models is still a challenge. In this paper, we present the reference model that we have created to support students in learning about the melatonin regulation in the context of the biological clock.
DOCUMENT
De interesse in licht is de afgelopen jaren enorm toegenomen. In het bijzonder betreft dit de invloed van licht op onze gezondheid, prestatie en andere, niet direct visueel gerelateerde aspecten. Het laatste heeft bijvoorbeeld tot gevolg gehad dat basisscholen momenteel op grote schaal uitgerust worden met dynamisch verlichting die de concentratie van scholieren zou verhogen, verlichting in kantoren die de prestatie van medewerkers moet verbeteren en verlichting voor ouderen met dementie die hun verstoorde slaapwaakritme kan stabiliseren. Maar de vraag is nu: hebben we wetenschappelijk bewijs dat deze systemen ook de beoogde claims halen? Dit artikel vraagt aandacht voor de feiten op het gebied van dynamische verlichting voor mensen met dementie en probeert deze van de fictie te onderscheiden.
DOCUMENT
Light therapy for older persons with dementia is often administered with light boxes, even though indoor ambient light may more comfortably support the diverse lighting needs of this population. Our objective is to investigate the influence of indoor daylight and lighting on the health of older adults with dementia living in long-term care facilities. A systematic literature search was performed within PubMed, CINAHL, PsycINFO, Web of Science and Scopus databases. The included articles (n=37) were published from 1991 to 2020. These articles researched the influence of existing and changed indoor light conditions on health and resulted in seven categories of health outcomes. Although no conclusive evidence was found to support the ability of indoor light to decrease challenging behaviors or improve circadian rhythms, findings of two studies indicate that exposure to (very) cool light of moderate intensity diminished agitation. Promising effects of indoor light were to reduce depressive symptoms and facilitate spatial orientation. Furthermore, there were indications that indoor light improved one’s quality of life. Despite interventions with dynamic lighting having yielded little evidence of its efficacy, its potential has been insufficiently researched among this study population. This review provides a clear and comprehensive description of the impact of diverse indoor light conditions on the health of older adults with dementia living in long-term care facilities. Variation was seen in terms of research methods, (the description of) light conditions, and participants’ characteristics (types and severity of dementia), thus confounding the reliability of the findings. The authors recommend further research to corroborate the beneficial effects of indoor light on depression and to clarify its role in supporting everyday activities of this population. An implication for practice in long-term care facilities is raising the awareness of the increased lighting needs of aged residents. Original article at: https://doi.org/10.2147/CIA.S297865
MULTIFILE
Daylight has been associated with multiple health advantages. Some of these claims are associations, hypotheses or beliefs. This review presents an overview of a scientific literature search on the proven effects of daylight exposure on human health. Studies were identified with a search strategy across two main databases. Additionally, a search was performed based on specific health effects. The results are diverse and either physiological or psychological. A rather limited statistically significant and well-documented scientific proof for the association between daylight and its potential health consequences was found. However, the search based on specific health terms made it possible to create a first subdivision of associations with daylight, leading to the first practical implementations for building design.
DOCUMENT
Daylight has been associated with multiple health advantages. Some of these claims are associations, hypotheses or beliefs. This review presents an overview of a scientific literature search on the proven effects of daylight exposure on human health. Studies were identified with a search strategy across two main databases. Additionally, a search was performed based on specific health effects. The results are diverse and either physiological or psychological. A rather limited statistically significant and well-documented scientific proof for the association between daylight and its potential health consequences was found. However, the search based on specific health terms made it possible to create a first subdivision of associations with daylight, leading to the first practical implementations for building design.
DOCUMENT
Success at school determines future career opportunities. We described a time-of-day specific disparity in school performance between early and late chronotypes. Several studies showed that students with a late chronotype and short sleep duration obtain lower grades, suggesting that early school starting times handicap their performance. How chronotype, sleep duration, and time of day impact school performance is not clear. At a Dutch high school, we collected 40,890 grades obtained in a variety of school subjects over an entire school year. We found that the strength of the effect of chronotype on grades was similar to that of absenteeism, and that late chronotypes were more often absent. The difference in grades between the earliest 20% and the latest 20% of chronotypes corresponds to a drop from the 55th to 43rd percentile of grades. In academic subjects using mainly fluid cognition (scientific subjects), the correlation with grades and chronotype was significant while subjects relying on crystallised intelligence (humanistic/linguistic) showed no correlation with chronotype. Based on these and previous results, we can expand our earlier findings concerning exam times: students with a late chronotype are at a disadvantage in exams on scientific subjects, and when they are examined early in the day.
DOCUMENT
Research demonstrated a large variety regarding effects of light (e.g. health, performance, or comfort effects). Since human health is related to each individual separately, the lighting conditions around these individuals should be analysed individually as well. This paper provides, based on a literature study, an overview identifying the currently used methodologies for measuring lighting conditions in light effect studies. 22 eligible articles were analysed and this resulted in two overview tables regarding the light measurement methodologies. In 70% of the papers, no measurement details were reported. In addition, light measurements were often averaged over time (in 84% of the papers) or location level (in 32% of the papers) whereas it is recommended to use continuous personal lighting conditions when light effects are being investigated. Conclusions drawn in light effect studies based on personal lighting conditions may be more trusting and valuable to be used as input for an effect-driven lighting control system.
LINK
Light pollution is one of the fastest growing and most pervasive of environmental pollution (Chepesiuk, 2009). In the last couple of years, a lot of research has been done about the effects of light pollution. The interest in light pollution has been growing in many fields of science, extending from the traditional field of astronomy to atmospheric physics, environmental sciences, natural sciences and human sciences. Better insight in light pollution is likely to contribute to design and operation of Facility Management (FM) based on evidence. According to Cinzano, Falchi, & Elvidge (2001), the Netherlands is one of the countries with the highest amount of light pollution, just as the United States. A sample of students in the Netherlands and the United States has been taken to explore differences and similarities between the two countries.
DOCUMENT