Background: Patient Reported Experience Measures are promoted to be used as an integrated measurement approach in which outcomes are used to improve individual care (micro level), organisational quality (meso level) and external justification (macro level). However, a deeper understanding of implementation issues of these measures is necessary. The narrative Patient Reported Experience Measure “Dit vind ik ervan!” (English “How I feel about it!”) is used in the Dutch disability care sector, but insight into its’ current use is lacking. We aimed to provide insight into experiences with the implementation and current ways of working with “Dit vind ik ervan!” as an integrated measurement strategy. A descriptive qualitative study was done at a disability care organisation. Data were collected by nine documentations, seven observations, 11 interviews and three focus groups. We applied deductive content analysis using the Consolidated Framework for Implementation Research as a framework. Results: Our analysis revealed facilitators and barriers for the implementation of “Dit vind ik ervan!”. We found most barriers at the micro level. Professionals and clients appreciated the measure’s narrative approach, but struggled to perform it with communication vulnerable clients. Some clients, professionals and team leaders were unfamiliar with the measure’s aim and benefit. On the meso level, implementation was done top-down, and the management’s vision using the measure as an integrated measurement approach was insufficiently shared throughout the organisation. Conclusions: Our study shows that Patient Reported Experience Measures have the potential to be used as an integrated measurement strategy. Yet, we found barriers at the micro level, which might have influenced using the measurement outcomes at the meso and macro level. Tailored implementation strategies, mostly focusing on designing and preparing the implementation on themicro level, need to be developed in co-creation with all stakeholders.
BACKGROUND: The original Rainbow Model of Integrated Care Measurement Tool (RMIC-MT) is based on the Rainbow Model of Integrated Care (RMIC), which provides a comprehensive theoretical framework for integrated care. To translate and adapt the original care provider version of the RMIC-MT and evaluate its psychometric properties by a pilot study in Chinese primary care systems.METHODS: The translation and adaptation process were performed in four steps, forward and back-translation, experts review and pre-testing. We conducted a cross-sectional study with 1610 community care professionals in all 79 community health stations in the Nanshan district. We analyzed the distribution of responses to each item to study the psychometric sensitivity. Exploratory factor analysis with principal axis extraction method and promax rotation was used to assess the construct validity. Cronbach's alpha was utilized to ascertain the internal consistency reliability. Lastly, confirmation factor analysis was used to evaluate the exploratory factor analysis model fit.RESULTS: During the translation and adaptation process, all 48 items were retained with some detailed modifications. No item was found to have psychometric sensitivity problems. Six factors (person- & community-centeredness, care integration, professional integration, organizational integration, cultural competence and technical competence) with 45 items were determined by exploratory factor analysis, accounting for 61.46% of the total variance. A standard Cronbach's alpha of 0.940 and significant correlation among all items in the scale (> 0.4) showed good internal consistency reliability of the tool. And, the model passed the majority of goodness-to-fit test by confirmation factor analysis.CONCLUSIONS: The results showed initial satisfactory psychometric properties for the validation of the Chinese RMIC-MT provider version. Its application in China will promote the development of people-centered integrated primary care. However, further psychometric testing is needed in multiple primary care settings with both public and private community institutes.
Introduction The Integrated Recovery Scales (IRS) was developed by the Dutch National Expertise board for routine outcome monitoring with severe mental illnesses. This board aimed to develop a multidimensional recovery measure directed at 1. clinical recovery, 2. physical health, 3. social recovery (work, social contacts, independent living) and 4. existential, personal recovery. The measure had to be short, suited for routine outcome monitoring and present the perspective of both mental health professionals and service users with severe mental illnesses. All aspects are assessed over a period of the pas 6 months. Objectives The objective of this research is validation of the Integral Recovery Scales and to test the revelance for clinical practice and police evaluation. Methods The instrument was tested with 500 individuals with severe mental illnesses (80% individuals with a psychotic disorder), of whom 200 were followed up for 1 year. For the questions concerning clinical recovery, physical health and social recovery mental health care workers conducted semi structured interviews with people living with serious illnesses. The questions concerning personal health were self-rated. We analyzed interrater reliability, convergent and divergent validity and sensitivity to change. Results The instrument has a good validity and is easy to complete for service users and mental health care workers and appropriate for clinical and policy evaluation goals. Conclusions The Integrated Recovery Scales can be a useful instrument for a simple and meaningful routine outcome monitoring. Page: 121
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.
MSEs have encountered limitations while pushing the limits of catheter tip sensors performance. The limitations summarized: - sensors are not immune to electrical signal noise, cross talk, and EM fields; - sensors are not immune to high magnetic fields, i.e. not suitable for MR imaging; - extending the amount of sensors on the catheter tip is limited due to cluttering of wires. A fundamentally different approach using integrated optics is chosen for developing a new generation catheter sensors. The complexity of the design and production problems represents a knowledge gap, that can be bridged in the proposed consortium. This project consists of four work packages, total duration two years, subdivided into four phases. A crucial deliverable of the project is presented at the end of phase IV (WP4), namely a demonstrator integrating pressure and temperature sensors (obtained from WP1) with a newly designed readout system. This system is modularly extendable for future catheter tip sensors. In WP1, pressure- and temperature sensors are developed using two design approaches. In WP2 the influence of downscaling an ultrasound MZI device is explored and the microfabrication process parameters are studied. An additional goal of WP2 is to find the most suitable method for measuring lactate concentration. Among the deliverables five manuscripts: manuscript 1 includes simulations and measurements of the developed pressure and temperature sensors, manuscript 2 answers the question: can a grated fiber be used for measuring pressure and temperature on a tip? Manuscript 3 answers the question: which method is most suitable for measuring lactate concentration on a tip? Manuscript 4 answers the question: does a US intensity detector fit on a catheter tip while obeying the LoR? Manuscript 5 describes the performance of the demonstrator (Phase IV), i.e. integration of T/P sensing with a modular read out system.
This project is part of an interdisciplinary and international collaboration bringing together experts in nanomaterials, sensor technology, and engineering from the University of Technology of Troyes (UTT, France), Eindhoven University of Technology (TU/e, The Netherlands) and Hanze University of Applied Sciences (HUAS, The Netherlands). It presents an innovative, integrated approach including design, fabrication, characterization, and integration of flexible sensors dedicated to wind turbine blade monitoring, aiming to advance smart monitoring and renewable energy research. The sensor will be developed using functional polymer films decorated with conductive nanoparticles. A novel manufacturing approach will be applied, combining additive manufacturing techniques with the colloidal deposition of silver or gold nanoparticles.