INTRODUCTION: Delirium in critically-ill patients is a common multifactorial disorder that is associated with various negative outcomes. It is assumed that sleep disturbances can result in an increased risk of delirium. This study hypothesized that implementing a protocol that reduces overall nocturnal sound levels improves quality of sleep and reduces the incidence of delirium in Intensive Care Unit (ICU) patients.METHODS: This interrupted time series study was performed in an adult mixed medical and surgical 24-bed ICU. A pre-intervention group of 211 patients was compared with a post-intervention group of 210 patients after implementation of a nocturnal sound-reduction protocol. Primary outcome measures were incidence of delirium, measured by the Intensive Care Delirium Screening Checklist (ICDSC) and quality of sleep, measured by the Richards-Campbell Sleep Questionnaire (RCSQ). Secondary outcome measures were use of sleep-inducing medication, delirium treatment medication, and patient-perceived nocturnal noise.RESULTS: A significant difference in slope in the percentage of delirium was observed between the pre- and post-intervention periods (-3.7% per time period, p=0.02). Quality of sleep was unaffected (0.3 per time period, p=0.85). The post-intervention group used significantly less sleep-inducing medication (p<0.001). Nocturnal noise rating improved after intervention (median: 65, IQR: 50-80 versus 70, IQR: 60-80, p=0.02).CONCLUSIONS: The incidence of delirium in ICU patients was significantly reduced after implementation of a nocturnal sound-reduction protocol. However, reported sleep quality did not improve.
DOCUMENT
Objective: The aim of the study was to assess the effectiveness of intensive care unit (ICU)–initiated transitional care interventions for patients and families on elements of post-intensive care syndrome (PICS) and/or PICS-family (PICS–F). Review method used: This is a systematic review and meta-analysis Sources: The authors searched in biomedical bibliographic databases including PubMed, Embase (OVID), CINAHL Plus (EBSCO), Web of Science, and the Cochrane Library and included studies written in English conducted up to October 8, 2020. Review methods: We included (non)randomised controlled trials focussing on ICU-initiated transitional care interventions for patients and families. Two authors conducted selection, quality assessment, and data extraction and synthesis independently. Outcomes were described using the three elements of PICS, which were categorised into (i) physical impairments (pulmonary, neuromuscular, and physical function), (ii) cognitive impairments (executive function, memory, attention, visuo-spatial and mental processing speed), and (iii) psychological health (anxiety, depression, acute stress disorder, post-traumatic stress disorder, and depression). Results: From the initially identified 5052 articles, five studies were included (i.e., two randomised controlled trials and three nonrandomised controlled trials) with varied transitional care interventions. Quality among the studies differs from moderate to high risk of bias. Evidence from the studies shows no significant differences in favour of transitional care interventions on physical or psychological aspects of PICS-(F). One study with a nurse-led structured follow-up program showed a significant difference in physical function at 3 months. Conclusions: Our review revealed that there is a paucity of research about the effectiveness of transitional care interventions for ICU patients with PICS. All, except one of the identified studies, failed to show a significant effect on the elements of PICS. However, these results should be interpreted with caution owing to variety and scarcity of data. Prospero registration: CRD42020136589 (available via https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020136589).
DOCUMENT
OBJECTIVE: To describe the long-term functioning of patients who survived a COVID-19-related admission to the intensive care unit and their family members, in the physical, social, mental and spiritual domain.DESIGN: A single-centre, prospective cohort study with a mixed-methods design.SETTING: The intensive care unit of the University Medical Center Groningen in the Netherlands.MAIN OUTCOME MEASURES: To study functioning 12 months after intensive care discharge several measurements were used, including a standardised list of physical problems, the Clinical Frailty Scale, the Medical Outcomes Study Short-Form General Health Survey, the McMaster Family Assessment Device, the Hospital Anxiety and Depression Scale, and the Spiritual Needs Questionnaire, as well as open questions and interviews with survivors and their family members.RESULTS: A total of 56 survivors (77%) returned the 12-month questionnaire, whose median age was 62 (inter-quartile range [IQR]: 55.0-68.0). Moreover, 67 family members (66%) returned the 12-month questionnaire, whose median age was 58 (IQR: 43-66). At least one physical problem was reported by 93% of the survivors, with 22% reporting changes in their work-status. Both survivors (84%) and their family members (85%) reported at least one spiritual need. The need to feel connected with family was the strongest. The main theme was 'returning to normal' in the interviews with survivors and 'if the patient is well, I am well' in the interviews with family members.CONCLUSIONS: One year after discharge, both COVID-19 intensive care survivors and their family members positively evaluate their health-status. Survivors experience physical impairments, and their family members' well-being is strongly impacted by the health of the survivor.
DOCUMENT
Delirium has been a recognised syndrome in the intensive care unit for some years. This systematic review reports risk factors for delirium studied in the intensive care unit. Four predisposing and 21 precipitating factors, including nine laboratory blood values and seven items relating to the use or the administration of medication, were found to influence the onset of delirium in the intensive care unit in six publications. The APACHE II score and hypertension were the only factors reported twice. Risk factors for the development of intensive care delirium were understudied and underreported in the literature.
DOCUMENT
Objective: Many patients with COVID-19 infections were admitted to an intensive care unit (ICU). Physical impairments are common after ICU stays and are associated with clinical and patient characteristics. To date, it is unknown if physical functioning and health status are comparable between patients in the ICU with COVID-19 and patients in the ICU without COVID-19 3 months after ICU discharge. The primary objective of this study was to compare handgrip strength, physical functioning, and health status between patients in the ICU with COVID-19 and patients in the ICU without COVID-19 3 months after ICU discharge. The second objective was to identify factors associated with physical functioning and health status in patients in the ICU with COVID-19. Methods: In this observational, retrospective chart review study, handgrip strength (handheld dynamometer), physical functioning (Patient-Reported Outcomes Measurement Information System Physical Function), and health status (EuroQol 5 Dimension 5 Level) were compared between patients in the ICU with COVID-19 and patients in the ICU without COVID-19 using linear regression. Multilinear regression analyses were used to investigate whether age, sex, body mass index, comorbidities in medical history (Charlson Comorbidity Index), and premorbid function illness (Identification of Seniors At Risk-Hospitalized Patients) were associated with these parameters in patients in the ICU with COVID-19. Results: In total, 183 patients (N = 92 with COVID-19) were included. No significant between-group differences were found in handgrip strength, physical functioning, and health status 3 months after ICU discharge. The multilinear regression analyses showed a significant association between sex and physical functioning in the COVID-19 group, with better physical functioning in men compared with women. Conclusions: Current findings suggest that handgrip strength, physical functioning, and health status are comparable for patients who were in the ICU with COVID-19 and patients who were in the ICU without COVID-19 3 months after ICU discharge. Impact: Aftercare in primary or secondary care in the physical domain of postintensive care syndrome after ICU discharge in patients with COVID-19 and in patients without COVID-19 who had an ICU length of stay >48 hours is recommended.
LINK
Emerging evidence suggests that exogenous protein/amino acid supplementation has the potential to improve the recovery of critically ill patients. After a careful review of the published evidence, experts have concluded that critically ill patients should receive up to 2.0-2.5 g/kg/d of protein. Despite this, however, recent review of current International Nutrition Survey data suggests that protein in critically ill patients is underprescribed and grossly underdelivered. Furthermore, the survey suggests that most of protein administration comes from enteral nutrition (EN) despite the availability of products and protocols that enhance the delivery of protein/amino acids in the intensive care unit (ICU) setting. While future research clarifies the dose, timing, and composition for exogenous protein administration, as well as identification of patients who will benefit the most, ongoing process improvement initiatives should target a concerted effort to increase protein intake in the critically ill. This assertion follows from the notion that current patients are possibly being harmed while we wait for confirmatory evidence. Further research should also develop better tools to enable bedside practitioners to monitor optimal or adequate protein intake for individual patients. Finally, exploring the effect of combining adequate protein delivery with early mobility and/or resistance exercise in the ICU setting has the greatest potential for improving the functional outcomes of survivors of critical illness and warrants further study.
DOCUMENT
ObjectiveMany patients with coronavirus disease 2019 (COVID-19) infections were admitted to an intensive care unit (ICU). Physical impairments are common after ICU stays and are associated with clinical and patient characteristics. To date, it is unknown if physical functioning and health status are comparable between patients in the ICU with COVID-19 and patients in the ICU without COVID-19 3 months after ICU discharge. The primary objective of this study was to compare handgrip strength, physical functioning, and health status between patients in the ICU with COVID-19 and patients in the ICU without COVID-19 3 months after ICU discharge. The second objective was to identify factors associated with physical functioning and health status in patients in the ICU with COVID-19. Methods In this observational, retrospective chart review study, handgrip strength (handheld dynamometer), physical functioning (Patient-Reported Outcomes Measurement Information System Physical Function), and health status (EuroQol 5 Dimension 5 Level) were compared between patients in the ICU with COVID-19 and patients in the ICU without COVID-19 using linear regression. Multilinear regression analyses were used to investigate whether age, sex, body mass index, comorbidities in medical history (Charlson Comorbidity Index), and premorbid function illness (Identification of Seniors At Risk-Hospitalized Patients) were associated with these parameters in patients in the ICU with COVID-19. Results In total, 183 patients (N = 92 with COVID-19) were included. No significant between-group differences were found in handgrip strength, physical functioning, and health status 3 months after ICU discharge. The multilinear regression analyses showed a significant association between sex and physical functioning in the COVID-19 group, with better physical functioning in men compared with women. Conclusion Current findings suggest that handgrip strength, physical functioning, and health status are comparable for patients who were in the ICU with COVID-19 and patients who were in the ICU without COVID-19 3 months after ICU discharge. Impact Aftercare in primary or secondary care in the physical domain of postintensive care syndrome after ICU discharge in patients with COVID-19 and in patients without COVID-19 who had an ICU length of stay >48 hours is recommended. Lay Summary Patients who were in the ICU with and without COVID-19 had a lower physical status and health status than healthy people, thus requiring personalized physical rehabilitation. Outpatient aftercare is recommended for patients with an ICU length of stay >48 hours, and functional assessment is recommended 3 months after hospital discharge.
MULTIFILE
Blood draws for laboratory investigations are essential for patient management in neonatal intensive care units (NICU). When blood samples clot before analysis, they are rejected, which delays treatment decisions and necessitates repeated sampling.
LINK
Several models have been developed to predict prolonged stay in the intensive care unit (ICU) after cardiac surgery. However, no extensive quantitative validation of these models has yet been conducted. This study sought to identify and validate existing prediction models for prolonged ICU length of stay after cardiac surgery.
DOCUMENT
Insight into protein requirements of intensive care unit (ICU) patients is urgently needed, but at present, it is unrealistic to define protein requirements for different diagnostic groups of critical illness or at different stages of illness. No large randomized controlled trials have randomized protein delivery, adequately addressed energy intake, and evaluated relevant clinical outcomes. As a pragmatic approach, experimental studies have focused on protein requirements of heterogeneous ICU patients. Data are scarce and the absolute value of protein requirements therefore is an approximation. Experimental studies indicate a protein requirement of >1.2 g/kg protein, which is supported by several outcome-based observational studies. Protein intake levels of up to 2.0-2.5 g/kg appear to be safe. A higher level of personalized treatment, within 1.2 and 2.5 g/kg, must involve identification of patients with low muscle protein mass that might benefit most from adequate protein nutrition in the ICU.
DOCUMENT