De laatste decennia is tijd een strategische concurrentiefactor geworden in de maakindustrie (Demeter, 2013; Godinho Filho et al., 2017a; Gromova, 2020). Naast tijdige levering verwacht de klant ook keuze, maatwerk, hoge kwaliteit en een lage prijs (Siong et al., 2018; Suri, 2020). Om de door de klant gewenste korte doorlooptijd te kunnen realiseren en daarbij ook te voldoen aan zijn andere eisen, zijn flexibiliteit en aanpassingsvermogen essentieel geworden (Godinho Filho et al., 2017b; Siong et al., 2018). Quick Response Manufacturing (QRM) heeft als doel de doorlooptijd te verkorten in productieomgevingen die gekenmerkt worden door een hoge variëteit in producten en maatwerk (Suri, 2020; Siong et al., 2018). QRM kent zijn oorsprong begin jaren negentig van de vorige eeuw (Suri, 2020) en vertoont sterke gelijkenis met lean manufacturing. Het verschil met lean manufacturing is echter dat QRM zich richt op bedrijven in een omgeving met veel productvariatie. Daarnaast heeft QRM nieuwe elementen toegevoegd, zoals Paired-cell Overlapping Loops of Cards with Authorization (POLCA) en Manufacturing Critical Path Time’ (MCT)’ (Godinho Filho et al., 2017b).
DOCUMENT
The proceedings contain 24 papers. The special focus in this conference is on Challenging the Future with Lean. The topics include: A Confrontation Between Lean Thinking and Postmetaphysical Philosophy; barriers and Enablers of Lean Industry 4.0; how Organizations Can Harness Continuous Improvement Practices to Develop Their Data Analytic Capability: A Conceptual Paper; Introducing DACAR: A Process Mapping Tool to Uncover Robotization Implications in Manufacturing; toward 1+1 = 3 with Lean Robotics: The Introduction of a Human-Centered Robotization Method; digital Tools Supporting Lean Program in a Multinational Enterprise; lean Planning & Control in a High-Variety/Low-Volume Environment; sustainability Struggles: Investigating the Interactions of Lean Practices and Barriers to Environmental Performance in Manufacturing; Investigating the Relationship Among Lean Manufacturing Practices to Improved Eco-Efficiency Performance: A Fuzzy DEMATEL Analysis; The Contribution of SMED to the Sustainability of Organizations; hoshin Kanri for Social Enterprises - Co-visualizing Values-Based Strategic Plans; integration of a Robot Solution in a Manufacturing Environment: A Serious Gaming Approach; using Games and Simulations to Facilitate Generative Conflict; the Influence of Learning Styles on the Perception of Lean Implementation Effectiveness by Employees; current State of Practice in Developing Lean Six Sigma Training and Certification Programs -an Irish Perspective; improving the Success Rate of Lean-Themed Internships; serious Games as a Lean Construction Teaching Method - A Conceptual Framework; The Impact of SMED on Productivity and Safety; a Systematic Literature Review on the Use of Lean Methodologies in Enterprise Sales Processes; the First Chapter of a Regional Deployment of a Continuous Improvement Program in a Medical Device Company.
LINK
From the article: Manufacturing technology can improve the turnover of a company if it enables fast market introduction for volume production. Reconfigurable equipment is developed to meet the growing demand for more agile production. Modular reconfiguration, defined as changing the structure of the machine, enables larger variation of products on a single manufacturing system; these solutions are called Reconfigurable Manufacturing Systems (RMS). The quality of RMS, and the required resources to bring it to reliable production, is largely determined by a swift execution of the reconfiguration process. This paper proposes a method to compare alternatives for the ways to implement reconfiguration. Three classes of reconfiguration are defined to distinguish the impact of the proposed alternatives. The procedure uses a recently introduced index method for development of RMS process modules. This index method is based on the Axiomatic Design theory. Weighing factors are used to calculate the resources and lead time needed to implement the reconfiguration process. Application of the method leads to quick comparison of alternatives in the early stage of development. Successful execution of the method was demonstrated for the manufacturing process of a 3D measuring probe.
MULTIFILE
Lean Production (LP) can be regarded as a design approach in search of a theoretical foundation. In this paper we show that Lowlands’ Sociotechnical Design Theory (STSL) could function as such a foundation. To reach this goal, we first describe STSL as a system theoretical reformulation of Original Sociotechnical Theory (OSTS). Then, we introduce the Toyota Production System as the origin of LP and the challenge it poses for the academic field of organization design. This academic field should (1) assess LP’s success, (2) generalize it by embedding it in more abstract concepts and theories in order to be able to (3) re-specify it for different manufacturing and non-manufacturing contexts. Next, we give an exposition of STSL as a structural design approach based on developments in system theory. At last, we reformulate lean production in STSL terms and so show that LP is a subcase within the more general theory of STSL. We discuss the merits of both approaches and clarify some misunderstandings of lean both outside and inside the lean community. Embedding LP in the more general language of STSL should enable us to discover similarities and differences, to start a process of mutual learning, to integrate diverse design approaches in a theory of organizational design and to add content to redesign proposals of for example the health care system as proposed by Porter and Teisberg (2006) and Christensen et al. (2009). We quote extensively from the lean literature (to convince our sociotechnical friends) and embed both STSL and LP in the broader literature on organization design. We hope this adds a new perspective to the one given in the Operations Management literature on LP. Again, mutual learning is the goal.
DOCUMENT
This paper presents work aimed at improved organization and performance of production in housing renovation projects. The purpose is to explore and demonstrate the potential of lean work organization and industrialized product technology to improve workflow and productive time. The research included selected case studies that have been found to implement lean work organization and industrialized product technology in an experimental setting. Adjustments to the work organization and construction technology have been implemented on site. The effects of the adjustments have been measured and were reviewed with operatives and managers. The data have been collected and analyzed, in comparison to traditional settings. Two projects were studied. The first case implied am application of lean work organization in which labor was reorganized redistributing and balancing operations among operatives of different trades. In the second case industrialized solution for prefabricated installation of prefabricated roofs. In both cases the labor productivity increased substantially compared to traditional situations. Although the limited number of cases, both situations appeared to be representative for other housing projects. This has led to conclusions extrapolated from both cases applicable to other projects, and contribution to the knowledge to improve production in construction. Vrijhoef, R. (2016). “Effects of Lean Work Organization and Industrialization on Workflow and Productive Time in Housing Renovation Projects.” In: Proc. 24 th Ann. Conf. of the Int’l. Group for Lean Construction, Boston, MA, USA, sect.2 pp. 63–72. Available at: .
MULTIFILE
Uit het rapport: "De opgave voor sociale woningbouwrenovatie in Nederland is enorm. De woningen moeten na renovatie veel energiezuiniger zijn. Maar corporaties en bewoners willen de renovatie snel, van hoge kwaliteit, duurzaam, goedkoop en met weinig overlast. De bouwsector heeft grote moeite om aan deze verwachtingen te voldoen zeker nu een tekort aan gekwalificeerde arbeid dreigt. De bouwbedrijven hebben de afgelopen jaren niet stilgezeten. Bouwbedrijven passen lean-principes toe en de realisatie van sociale woningbouwprojecten is duidelijk beter onder controle. Maar het proces voorafgaand aan de realisatie van de sociale woningbouwrenovatie (het voortraject) is vaak verre van optimaal. Actoren in dit voortraject geven aan dat er sprake is van miscommunicatie, late wijzigingsvoorstellen, gebrekkige sturing en omissies. Het gevolg is dat de bouwpartijen in het voortraject van sociale woningbouwrenovaties relatief veel kosten maken, het voortraject lang duurt en niet optimaal is. Lectoraten van HU en HAN beantwoorden samen met opleidingen en bedrijfsleven de vraag: Hoe kan het voortraject van sociale woningbouwrenovatieprojecten efficiënter en effectiever gemaakt worden vanuit een algemene procesaanpak (toolbox) inclusief bijbehorend procesinstrumentarium (tools) die naar gelang de situatie flexibel kan worden ingezet? De onderzoeksmethodologie in het project is 'design research' met daarin onderscheid tussen de praktijk- en kennisstroom. In de praktijkstroom vinden praktijkanalyses en experimenten/interventies bij 9 sociale woningbouwprojecten plaats. De experimenten/interventies zijn gericht op het beheersen van kritieke succesfactoren. Dat vormt de input voor de kennisstroom, casevergelijkend onderzoek, waaruit generieke kennis volgt over het beheersen van het voortraject van sociale woningbouwrenovatieprojecten. Met de toolbox geven de ketenpartners van sociale woningbouwrenovatie projectspecifiek invulling aan de beheersing van het voortraject. De toolbox omvat communicatie-, taak- en verantwoordelijkheidsstructuren en middelen (checklisten, informatiebronnen, analysemethoden) die nodig zijn voor het beheersen van onderdelen die bepalend zijn voor het succes van het voortraject. Het project biedt hiertoe een aanpak en de benodigde tools, ofwel de 'lean project preparation toolbox'."
DOCUMENT
Author supplied: A manufacturing process can be described by a sequence or combination of production steps. Based on this approach a manufacturing system has been developed that is capable to produce several different products in parallel. A batch size of one unit is possible and the production is pull-driven. The manufacturing system is based on agent technology and a special so-called product agent collects information about the assembly process. This agent will be connected to the actual product and can guide the disassembly process at the end of the products life. The agent will show the inverse steps to be taken to take a product apart. This approach can be used in the agent based manufacturing process described in this paper but the concept can also be used for other manufacturing systems. The paper discusses the possibilities as well as the restrictions of the method proposed here.
DOCUMENT
This chapter explains in brief what is needed to achieve more sustainable manufacturing processes. It develops both aspects of sustainable, economic, and technical feasibility with most focus on the latter. Remanufacturing processes are described together with relevant factors that enhance their effectivity and efficiency. An overview is given of what kind of shopfloor innovations are required in the near future and some suggestions on how digital and other Industry 4.0 technologies could help to move toward circular manufacturing.
MULTIFILE
Relatief kleine, gespecialiseerde bedrijven in de maakindustrie hebben behoefte aan flexibele assemblageprocessen en productielogistiek. Digitalisering biedt veel mogelijkheden om productieprocessen efficiënter en duurzamer te maken, innovatieve producten te fabriceren en over te schakelen op andere businessmodellen. Dit moet dan wel werken voor kleine series en enkelstuks. ‘Kunnen wij het maken?’ verwijst naar onderliggende vragen over: ‘Hoe beheersen we risico’s in complexe maakprocessen?’, ‘Hoe werken we samen in de keten?’ en ‘Wat moeten huidige en toekomstige engineers weten over ‘Industry 4.0’ en circulaire maakindustrie?’. Bijgaand essay, in verkorte vorm uitgesproken als Intreerede, legt uit hoe de onderzoekers van Smart Sustainable Manufacturing aan de slag gaan om een antwoord te vinden op deze vragen, door middel van cocreatie met de beroepspraktijk en het onderwijs in het Re/manufacturing lab.
DOCUMENT