Densely populated areas are major sources of air, soil and water pollution. Agriculture, manufacturing, consumer households and road traffic all have their share. This is particularly true for the country featured in this paper: the Netherlands. Continuous pollution of the air and soil manifests itself as acification, decalcification and eutrofication. Biodiversity becomes lower and lower in nature areas. Biological farms are also under threat. In case of mobility, local air pollution may have a huge health impact. Effective policy is called for, after high courts blocked construction projects, because of foreseen building- and transport-related NOx emissions. EU law makers are after Dutch governments, because these favoured economics and politics over environmental and liveability concerns. But, people in the Netherlands are strongly divided. The latest provincial elections were dominated by environmental concerns, next to many socio-economic issues. NOx and CO2 emissions by passenger cars are in focus. Technical means and increasing fuel economy norms strongly reduced NOx emissions to a still too high level. A larger number of cars neutralized a technological reduction of CO2 emissions. The question is: What would be the impact of a drastic mandatory reduction in CO2, NOx, and PM10 emissions on car ownership and use in the Netherlands? The authors used literature, scenario analysis and simulation modelling to answer this question. Electric mobility could remove these emissions. Its full impact will only be achieved if the grid-mix, which is still dominated by fossil fuels, becomes green(er), which is a gradual, long-term, process. EVs compete with other consumers of electricity, as many other activities, such as heating, are also electrifying. With the current grid-mix, it is inevitable that the number of km per vehicle per year is reduced to reach the scenario targets (−25% resp. −50% CO2 emissions by cars). This calls for an individual mobility budget per car user.
LINK
Cities worldwide are growing at unprecedented rates, compromising their surrounding landscapes, and consuming many scarce resources. As a consequence, this will increase the compactness of cities and will also decrease the availability of urban green space. In recent years, many Dutch municipalities have cut back on municipal green space and itsmaintenance. To offer a liveable environment in 30 to 50 years, cities must face challenges head-on and strive to create green urban areas that build on liveable and coherent sustainable circular subsystems.
MULTIFILE
Deze beschouwing beschrijft de empirische evidentie over het effect van kunst als interventie op de sociale cohesie en leefbaarheid. Het doel van deze beschouwing is inzicht krijgen in de effecten van kunst op de sociale cohesie en leefbaarheid van de stad Utrecht en hoe de gemeente Utrecht kunst toepast in het veiligheidsbeleid. Modellen en grafieken die in deze beschouwing aan bod komen zijn een middel om de effectiviteit van kunstinterventies in te schatten voor het werkveld.
The project focuses on sustainable travel attitude and behaviour with attention to balance, liveability, impact and climate change (as indicated above). The customer journey is approached from the consumer side and intends to shed light on the way COVID-19 has influenced (or not) the following aspects:• consumer’s understanding and appreciation of sustainability • the extent to which this understanding has influenced their attitude towards sustainable travel choices• the extent to which this change is represented in their actual and projected travel behaviour throughout the travel decision-making process • conditions that may foster a more sustainable travel behaviourThe project can be seen as a follow up to existing studies on travel intention during and post COVID-19, such as ETC’s publication on Monitoring sentiment for domestic and Intra-European travel – Wave 5, or the joint study of the European Tourism Futures Institute (ETFI – www.etfi.nl) and the Centre of Expertise in Leisure, Tourism and Hospitality (CELTH – www.celth.nl) highlighting four future scenarios for the leisure, tourism and hospitality sectors post COVID-19. The project will look beyond travel intention and will supplement existing knowledge with crucial information on the way consumers view sustainability and the extent to which they are willing to adjust their travel behaviour to aid the recovery of a more sustainable travel and tourism industry. Therefore, the report aims to generate knowledge vital for the understanding of consumer trends and the role sustainability will play in travel choices in the near future.Problem statementPlease describe which question in the (participating) industry is addressed.How has the sustainable travel attitude and behaviour in selected European source markets been influenced by the COVID-19 pandemic? Further questions to be answered:• How did the COVID-19 pandemic influence the consumer’s understanding and appreciation of sustainability?• To what extent did this understanding influence their attitude towards sustainable travel choices?• To what extent is this change represented in their actual and projected travel behaviour throughout the travel decision-making process?• What are the conditions that may foster a more sustainable travel behaviour?
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.
English: This living lab aims to support the creation, development and implementation of next generation concepts for sustainable healthcare logistics, with special attention for last mile solutions. Dutch healthcare providers are on the verge of a transition towards (more) sustainable business models, spurred by e.g., increasing healthcare costs, ongoing budget cuts, tight labor market conditions and increasing ecological awareness. Consequently, healthcare providers need to improve and innovate their business model and underlying logistics concept(s). Simultaneously, many cities are struggling with congestion in traffic, air quality and liveability in general. This calls for Last Mile Logistics (LML) concepts that can address challenges like effective and efficient resource planning, scheduling and utilization and, particularly, sustainability goals. LML can reduce environmental and social impact by decreasing emissions, congestion and pollution through effectively consolidating in-flows of goods and providing innovative solutions for care, wellbeing and related services. The research and initiatives in the living lab will address the following challenges: reducing the ecological footprint, reducing (healthcare-related) costs, improving service quality, decreasing loneliness of frail citizens and improving the livability of urban areas (reducing congestion and emissions). Given the scarcity and fragmentation of knowledge on healthcare logistics in organizations the living lab will also act as a learning community for (future) healthcare- and logistics professionals, thereby supporting the development of human capital. By working closely with related stakeholders and using a transdisciplinary research approach it is ensured that the developed knowledge and solutions deliver a contribution to societal challenges and have sound business potential.