The Bio-P2G-program (Bio-Power to Gas) at the Hanze University of AppliedSciences evaluates the technologic feasibility of the biological reduction of carbondioxide with hydrogen to methane (biomethanation: 1 CO2 + 4 H2 -> CH4 + 2 H2O)Chemically, this process is known as the Sabatier reaction, but within anaerobicdigestion the biological methanation is catalyzed by a specific group ofmicroorganisms: the hydrogenotrophic methanogens.
DOCUMENT
Excess of renewable electricity from wind turbines or solar panels is used for electrolysis of water. To store this renewable energy as methane, the hydrogen is fed to an anaerobic digester to stimulate biological methanation by hydrogenotrophic methanogens. These work packages focus on the best ways for hydrogen delivery and the community changes in a biomethanation reactor as a result of hydrogen supply.
DOCUMENT
In the field of ‘renewable energy resources’ formation of biogas is an important option. Biogas can be produced from biomass in a multistep process called anaerobic digestion (AD) and is usually performed in large digesters. Anaerobic digestion of biomass is mediated by various groups of microorganisms, which live in complex community structures. However, there is still limited knowledge on the relationships between the type of biomass and operational process parameters. This relates to the changes within the microbial community structure and the resulting overall biogas production efficiency. Opening this microbial black box could lead to an better understanding of on-going microbial processes, resulting in higher biogas yields and overall process efficiencies.
DOCUMENT