In our in-depth case study on two circular business models we found important roles for material scouts and networks. These key partners are essential for establishing circular business models and circular flow of materials. Besides, we diagnose that companies are having difficulties to develop viable value propositions and circular strategies. The paper was presented at NBM Nijmegen 2020 and will be published at a later date
Amidst escalating environmental and social challenges, this study explores regenerative business models’ definition and characteristics. While sustainable models have made considerable strides in research, policy, and practice, the advent of regenerative business models offers a progressive leap forward. Regenerative business models aspire to contribute to ecological restoration and societal well-being. The regenerative business model concept is, however, still in its infancy and lacks a comprehensive definition. Our study aims to expand this knowledge, using a Delphi-inspired approach that builds on the knowledge of academic and business experts. Our approach includes three rounds of surveys: an open-ended survey, a survey for rating and ranking the earlier responses of all participants, and a final survey to select key characteristics. We investigate patterns and distinctions among regenerative, regenerative business, and regenerative business models, and analyze their positioning vis-a-vis circular and net-positive models. Findings underscore that organizations adopting regenerative business models focus on planetary health and societal well-being. They generate value across multiple stakeholder levels, including nature, societies, customers, suppliers, shareholders, and employees. Despite overlapping with circular and net-positive models, regenerative business models also emphasize interdependencies between humans and nature, and provide a more holistic approach, centered on restoration rather than mere mitigation.
In this study, we address the function of role models for entrepreneurship students. By using entrepreneurs as role models, students can get a better and realistic picture of the complexity of the entrepreneurial path. Choosing whom to interview as role model can be diverse, but it can be problematic if, as a result of that choice, the learning effect in the same group of students is different.
The transition towards an economy of wellbeing is complex, systemic, dynamic and uncertain. Individuals and organizations struggle to connect with and embrace their changing context. They need to create a mindset for the emergence of a culture of economic well-being. This requires a paradigm shift in the way reality is constructed. This emergence begins with the mindset of each individual, starting bottom-up. A mindset of economic well-being is built using agency, freedom, and responsibility to understand personal values, the multi-identity self, the mental models, and the individual context. A culture is created by waving individual mindsets together and allowing shared values, and new stories for their joint context to emerge. It is from this place of connection with the self and the other, that individuals' intrinsic motivation to act is found to engage in the transitions towards an economy of well-being. This project explores this theoretical framework further. Businesses play a key role in the transition toward an economy of well-being; they are instrumental in generating multiple types of value and redefining growth. They are key in the creation of the resilient world needed to respond to the complex and uncertain of our era. Varta-Valorisatielab, De-Kleine-Aarde, and Het Groene Brein are frontrunner organizations that understand their impact and influence. They are making bold strategic choices to lead their organizations towards an economy of well-being. Unfortunately, they often experience resistance from stakeholders. To address this resistance, the consortium in the proposal seeks to answer the research question: How can individuals who connect with their multi-identity-self, (via personal values, mental models, and personal context) develop a mindset of well-being that enables them to better connect with their stakeholders (the other) and together address the transitional needs of their collective context for the emergence of a culture of the economy of wellbeing?
Developing a framework that integrates Advanced Language Models into the qualitative research process.Qualitative research, vital for understanding complex phenomena, is often limited by labour-intensive data collection, transcription, and analysis processes. This hinders scalability, accessibility, and efficiency in both academic and industry contexts. As a result, insights are often delayed or incomplete, impacting decision-making, policy development, and innovation. The lack of tools to enhance accuracy and reduce human error exacerbates these challenges, particularly for projects requiring large datasets or quick iterations. Addressing these inefficiencies through AI-driven solutions like AIDA can empower researchers, enhance outcomes, and make qualitative research more inclusive, impactful, and efficient.The AIDA project enhances qualitative research by integrating AI technologies to streamline transcription, coding, and analysis processes. This innovation enables researchers to analyse larger datasets with greater efficiency and accuracy, providing faster and more comprehensive insights. By reducing manual effort and human error, AIDA empowers organisations to make informed decisions and implement evidence-based policies more effectively. Its scalability supports diverse societal and industry applications, from healthcare to market research, fostering innovation and addressing complex challenges. Ultimately, AIDA contributes to improving research quality, accessibility, and societal relevance, driving advancements across multiple sectors.
The maximum capacity of the road infrastructure is being reached due to the number of vehicles that are being introduced on Dutch roads each day. One of the plausible solutions to tackle congestion could be efficient and effective use of road infrastructure using modern technologies such as cooperative mobility. Cooperative mobility relies majorly on big data that is generated potentially by millions of vehicles that are travelling on the road. But how can this data be generated? Modern vehicles already contain a host of sensors that are required for its operation. This data is typically circulated within an automobile via the CAN bus and can in-principle be shared with the outside world considering the privacy aspects of data sharing. The main problem is, however, the difficulty in interpreting this data. This is mainly because the configuration of this data varies between manufacturers and vehicle models and have not been standardized by the manufacturers. Signals from the CAN bus could be manually reverse engineered, but this process is extremely labour-intensive and time-consuming. In this project we investigate if an intelligent tool or specific test procedures could be developed to extract CAN messages and their composition efficiently irrespective of vehicle brand and type. This would lay the foundations that are required to generate big data-sets from in-vehicle data efficiently.