This paper describes the work that is done by a group of I3 students at Philips CFT in Eindhoven, Netherlands. I3 is an initiative of Fontys University of Professional Education also located in Eindhoven. The work focuses on the use of computer vision in motion control. Experiments are done with several techniques for object recognition and tracking, and with the guidance of a robot movement by means of computer vision. These experiments involve detection of coloured objects, object detection based on specific features, template matching with automatically generated templates, and interaction of a robot with a physical object that is viewed by a camera mounted on the robot.
DOCUMENT
This pilot study explores the possibility of cognitive training software Neurotracker (NT), to have potential beneficial effects for Traumatic Brain Injury patients with Sensory Processing Disorder. Five subjects with TBI and SPD trained for 5 weeks/21 sessions with Neurotracker. Pre-post training cognitive tests (WAIS TMTA, TMTB, LNS) and surveys were conducted to measure possible cognitive differences with no statistical significant results. However, significant improvement in Neurotracker scores were found. =2.73, SD = 0.55) and positive changes associated with attention attention span, divided attention, (multiple) object tracking and motion sickness. LinkedIn: https://www.linkedin.com/in/bernard-de-roosz-28b96b125/
DOCUMENT
In this paper we present a method to detect the three dimensional position and orientation of a Wii Remote with one or more emissive spheres attached to it, providing an input device that has six degrees of freedom. Unlike other systems, our system can focus in different directions surrounding the user, with a high precision, and at a low cost. We describe the way object-, motion- and orientation tracking is done, as well as the applicability of the final product. We further describe how to improve the noisy data that is retrieved from the sensors of the Wii Remote, how to smooth detected positions, and how to extrapolate position and orientation.
DOCUMENT
Purpose – In the domain of healthcare, both process efficiency and the quality of care can be improved through the use of dedicated pervasive technologies. Among these applications are so-called real-time location systems (RTLS). Such systems are designed to determine and monitor the location of assets and people in real time through the use of wireless sensor networks. Numerous commercially available RTLS are used in hospital settings. The nursing home is a relatively unexplored context for the application of RTLS and offers opportunities and challenges for future applications. The paper aims to discuss these issues. Design/methodology/approach – This paper sets out to provide an overview of general applications and technologies of RTLS. Thereafter, it describes the specific healthcare applications of RTLS, including asset tracking, patient tracking and personnel tracking. These overviews are followed by a forecast of the implementation of RTLS in nursing homes in terms of opportunities and challenges. Findings – By comparing the nursing home to the hospital, the RTLS applications for the nursing home context that are most promising are asset tracking of expensive goods owned by the nursing home in orderto facilitate workflow and maximise financial resources, and asset tracking of personal belongings that may get lost due to dementia. Originality/value – This paper is the first to provide an overview of potential application of RTLS technologies for nursing homes. The paper described a number of potential problem areas that can be addressed by RTLS. Published by Emerald Publishing Limited Original article: https://doi.org/10.1108/JET-11-2017-0046 For this paper Joost van Hoof received the Highly Recommended Award from Emerald Publishing Ltd. in October 2019: https://www.emeraldgrouppublishing.com/authors/literati/awards.htm?year=2019
MULTIFILE
Author supplied from the article: ABSTRACT Increasing global competition in manufacturing technology puts pressure on lead times for product design and production engineering. By the application of effective methods for systems engineering (engineering design), the development risks can be addressed in a structured manner to minimise chances of delay and guarantee timely market introduction. Concurrent design has proven to be effective in markets for high tech systems; the product and its manufacturing means are simultaneously developed starting at the product definition. Unfortunately, not many systems engineering methodologies do support development well in the early stage of the project where proof of concept is still under investigation. The number of practically applicable tools in this stage is even worse. Industry could use a systems engineering method that combines a structured risk approach, concurrent development, and especially enables application in the early stage of product and equipment design. The belief is that Axiomatic Design can provide with a solid foundation for this need. This paper proposes a ‘Constituent Roadmap of Product Design’, based on the axiomatic design methodology. It offers easy access to a broad range of users, experienced and inexperienced. First, it has the ability to evaluate if knowledge application to a design is relevant and complete. Secondly, it offers more detail within the satisfaction interval of the independence axiom. The constituent roadmap is based on recent work that discloses an analysis on information in axiomatic design. The analysis enables better differentiation on project progression in the conceptual stage of design. The constituent roadmap integrates axiomatic design and the methods that harmonise with it. Hence, it does not jeopardise the effectiveness of the methodology. An important feature is the check matrix, a low threshold interface that unlocks the methodology to a larger audience. (Source - PDF presented at ASME IMECE (International Mechanical Engineering Congress and Exposition
DOCUMENT
Accurate assessment of rolling resistance is important for wheelchair propulsion analyses. However, the commonly used drag and deceleration tests are reported to underestimate rolling resistance up to 6% due to the (neglected) influence of trunk motion. The first aim of this study was to investigate the accuracy of using trunk and wheelchair kinematics to predict the intra-cyclical load distribution, more particularly front wheel loading, during hand-rim wheelchair propulsion. Secondly, the study compared the accuracy of rolling resistance determined from the predicted load distribution with the accuracy of drag test-based rolling resistance. Twenty-five able-bodied participants performed hand-rim wheelchair propulsion on a large motor-driven treadmill. During the treadmill sessions, front wheel load was assessed with load pins to determine the load distribution between the front and rear wheels. Accordingly, a machine learning model was trained to predict front wheel load from kinematic data. Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance determined from the predicted load distribution (MAE: 0.9%, mean error (ME): 0.1%) was more accurate than drag test-based rolling resistance (MAE: 2.5%, ME: −1.3%).
DOCUMENT
Daily wheelchair ambulation is seen as a risk factor for shoulder problems, which are prevalent in manual wheelchair users. To examine the long-term effect of shoulder load from daily wheelchair ambulation on shoulder problems, quantification is required in real-life settings. In this study, we describe and validate a comprehensive and unobtrusive methodology to derive clinically relevant wheelchair mobility metrics (WCMMs) from inertial measurement systems (IMUs) placed on the wheelchair frame and wheel in real-life settings. The set of WCMMs includes distance covered by the wheelchair, linear velocity of the wheelchair, number and duration of pushes, number and magnitude of turns and inclination of the wheelchair when on a slope. Data are collected from ten able-bodied participants, trained in wheelchair-related activities, who followed a 40 min course over the campus. The IMU-derived WCMMs are validated against accepted reference methods such as Smartwheel and video analysis. Intraclass correlation (ICC) is applied to test the reliability of the IMU method. IMU-derived push duration appeared to be less comparable with Smartwheel estimates, as it measures the effect of all energy applied to the wheelchair (including thorax and upper extremity movements), whereas the Smartwheel only measures forces and torques applied by the hand at the rim. All other WCMMs can be reliably estimated from real-life IMU data, with small errors and high ICCs, which opens the way to further examine real-life behavior in wheelchair ambulation with respect to shoulder loading. Moreover, WCMMs can be applied to other applications, including health tracking for individual interest or in therapy settings.
DOCUMENT
Introduction: Falling causes long term disability and can even lead to death. Most falls occur during gait. Therefore improving gait stability might be beneficial for people at risk of falling. Recently arm swing has been shown to influence gait stability. However at present it remains unknown which mode of arm swing creates the most stable gait. Aim: To examine how different modes of arm swing affect gait stability. Method: Ten healthy young male subjects volunteered for this study. All subjects walked with four different arm swing instructions at seven different gait speeds. The Xsens motion capture suit was used to capture gait kinematics. Basic gait parameters, variability and stability measures were calculated. Results: We found an increased stability in the medio-lateral direction with excessive arm swing in comparison to normal arm swing at all gait speeds. Moreover, excessive arm swing increased stability in the anterior–posterior and vertical direction at low gait speeds. Ipsilateral and inphase arm swing did not differ compared to a normal arm swing. Discussion: Excessive arm swing is a promising gait manipulation to improve local dynamic stability. For excessive arm swing in the ML direction there appears to be converging evidence. The effect of excessive arm swing on more clinically relevant groups like the more fall prone elderly or stroke survivors is worth further investigating. Conclusion: Excessive arm swing significantly increases local dynamic stability of human gait.
DOCUMENT
Purpose: To examine the effects of different small-sided games (SSGs) on physical and technical aspects of performance in wheelchair basketball (WB) players. Design: Observational cohort study. Methods: Fifteen highly trained WB players participated in a single 5v5 (24-s shot clock) match and three 3v3 SSGs (18-s shot clock) on a (1) full court, (2) half-court, and (3) modified-length court. During all formats, players’ activity profiles were monitored using an indoor tracking system and inertial measurement units. Physiological responses were monitored via heart rate and rating of perceived exertion. Technical performance, that is, ball handling, was monitored using video analysis. Repeated-measures analysis of variance and effect sizes (ESs) were calculated to determine the statistical significance and magnitude of any differences between game formats. Results: Players covered less distance and reached lower peak speeds during half-court (P ≤ .0005; ES ≥ very large) compared with all other formats. Greater distances were covered, and more time was spent performing moderate- and high-speed activity (P ≤ .008; ES ≥ moderate) during full court compared with all other formats. Game format had little bearing on physiological responses, and the only differences in technical performance observed were in relation to 5v5. Players spent more time in possession, took more shots, and performed more rebounds in all 3v3 formats compared with 5v5 (P ≤ .028; ES ≥ moderate). Conclusions: Court dimensions affect the activity profiles of WB players during 3v3 SSGs yet had little bearing on technical performance when time pressures (shot clocks) were constant. These findings have important implications for coaches to understand which SSG format may be most suitable for physically and technically preparing WB players. DOI: https://doi.org/10.1123/ijspp.2017-0500 LinkedIn: https://www.linkedin.com/in/rienkvdslikke/ https://www.linkedin.com/in/moniqueberger/
MULTIFILE
Data collected from fitness trackers worn by employees could be very useful for businesses. The sharing of this data with employers is already a well-established practice in the United States, and companies in Europe are showing an interest in the introduction of such devices among their workforces. Our argument is that employers processing their employees’ fitness trackers data is unlikely to be lawful under the General Data Protection Regulation (GDPR). Wearable fitness trackers, such as Fitbit and AppleWatch devices, collate intimate data about the wearer’s location, sleep and heart rate. As a result, we consider that they not only represent a novel threat to the privacy and autonomy of the wearer, but that the data gathered constitutes ‘health data’ regulated by Article 9. Processing health data, including, in our view, fitness tracking data, is prohibited unless one of the specified conditions in the GDPR applies. After examining a number of legitimate bases which employers can rely on, we conclude that the data processing practices considered do not comply with the principle of lawfulness that is central to the GDPR regime. We suggest alternative schema by which wearable fitness trackers could be integrated into an organization to support healthy habits amongst employees, but in a manner that respects the data privacy of the individual wearer.
MULTIFILE