Mexican oregano is a non-timber forest product harvested in natural vegetation and represents an important source of income for rural families. Recent reports have highlighted decreases in natural populations caused by increased harvest intensity. Oregano leaf harvesting is a complex problem, involving different components and views, and has a clear spatial dimension. We proposed an analytical framework based on multi-criteria-multi-objective analyses. GIS tools were used as the platform for managing, displaying and analyzing ecological and socioeconomic information from different sources in order to evaluate land suitability of three different management strategies for two competing land objectives: oregano Harvest and oregano Regeneration. The incorporation of environmental evaluation criteria in the analysis allowed the identification of new potential oregano harvesting areas which were neither reported by harvesters, nor registered during harvesting trips. Socio-economic criteria, such as land tenure, highlighted the fact that a substantial proportion of current oregano harvesting areas are located outside ejido limits resulting in potential conflicts for resource access. The proposed Balanced oregano management strategy, in which the same proportion of suitable area (50%) was assigned to both objectives, represents the most favorable management strategy. This option allows harvesters to continue earning an income from oregano leaf harvest; and at the same time helps in the selection of the best areas for oregano regeneration. It also represents a management strategy with a smaller impact on oregano populations and on the harvesters ́ income, as well as lower monitoring costs. The proposed analytical frame-work may contribute to advance the application of systematic approaches for solving decision-making problems in areas where oregano leaves and other NTFP are harvested.
MULTIFILE
Background Objective gait analysis that fully captures the multi-segmental foot movement of a clubfoot may help in early identification of a relapse clubfoot. Unfortunately, this type of objective measure is still lacking in a clinical setting and it is unknown how it relates to clinical assessment. Research question The aim of this study was to identify differences in total gait and foot deviations between clubfoot patients with and without a relapse clubfoot and to evaluate their relationship with clinical status. Methods In this study, Ponseti-treated idiopathic clubfoot patients were included and divided into clubfoot patients with and without a relapse. Objective gait analysis was done resulting in total gait and foot scores and clinical assessment was performed using the Clubfoot Assessment Protocol (CAP). Additionally, a new clubfoot specific foot score, the clubFoot Deviation Index (cFDI*), was calculated to better capture foot kinematics of clubfoot patients. Results Clubfoot patients with a relapse show lower total gait quality (GDI*) and lower clinical status defined by the CAP than clubfoot patients without a relapse. Abnormal cFDI* was found in relapse patients, reflected by differences in corresponding variable scores. Moderate relationships were found for the subdomains of the CAP and total gait and foot quality in all clubfoot patients. Significance A new total foot score was introduced in this study, which was more relevant for the clubfoot population. The use of this new foot score (cFDI*) besides the GDI*, is recommended to identify gait and foot motion deviations. Along with clinical assessment, this will give an overview of the overall status of the complex, multi-segmental aspects of a (relapsed) clubfoot. The relationships found in this study suggest that clinical assessment might be indicative of a deviation in total gait and foot pattern, therefore hinting towards personalised screening for better treatment decision making.
MULTIFILE
New consumer awareness is shifting industry towards more sustainable practices, creating a virtuous cycle between producers and consumers enabled by eco-labelling. Eco-labelling informs consumers of specific characteristics of products and has been used to market greener products. Eco-labelling in the food industry has yet been mostly focused on promoting organic farming, limiting the scope to the agricultural stage of the supply chain, while carbon labelling informs on the carbon footprint throughout the life cycle of the product. These labelling strategies help value products in the eyes of the consumer. Because of this, decision makers are motivated to adopt more sustainable models. In the food industry, this has led to important environmental impact improvements at the agricultural stage, while most other stages in the Food Supply Chain (FSC) have continued to be designed inefficiently. The objective of this work is to define a framework showing how carbon labelling can be integrated into the design process of the FSC. For this purpose, the concept of Green Supply Chain Network Design (GSCND) focusing on the strategic decision making for location and allocation of resources and production capacity is developed considering operational, financial and environmental (CO2 emissions) issues along key stages in the product life cycle. A multi-objective optimization strategy implemented by use of a genetic algorithm is applied to a case study on orange juice production. The results show that the consideration of CO2 emission minimization as an objective function during the GSCND process together with techno-economic criteria produces improved FSC environmental performance compared to both organic and conventional orange juice production. Typical results thus highlight the importance that carbon emissions optimization and labelling may have to improve FSC beyond organic labelling. Finally, CO2 emission-oriented labelling could be an important tool to improve the effects eco-labelling has on food product environmental impact going forward.
The demand for mobile agents in industrial environments to perform various tasks is growing tremendously in recent years. However, changing environments, security considerations and robustness against failure are major persistent challenges autonomous agents have to face when operating alongside other mobile agents. Currently, such problems remain largely unsolved. Collaborative multi-platform Cyber- Physical-Systems (CPSs) in which different agents flexibly contribute with their relative equipment and capabilities forming a symbiotic network solving multiple objectives simultaneously are highly desirable. Our proposed SMART-AGENTS platform will enable flexibility and modularity providing multi-objective solutions, demonstrated in two industrial domains: logistics (cycle-counting in warehouses) and agriculture (pest and disease identification in greenhouses). Aerial vehicles are limited in their computational power due to weight limitations but offer large mobility to provide access to otherwise unreachable places and an “eagle eye” to inform about terrain, obstacles by taking pictures and videos. Specialized autonomous agents carrying optical sensors will enable disease classification and product recognition improving green- and warehouse productivity. Newly developed micro-electromechanical systems (MEMS) sensor arrays will create 3D flow-based images of surroundings even in dark and hazy conditions contributing to the multi-sensor system, including cameras, wireless signatures and magnetic field information shared among the symbiotic fleet. Integration of mobile systems, such as smart phones, which are not explicitly controlled, will provide valuable information about human as well as equipment movement in the environment by generating data from relative positioning sensors, such as wireless and magnetic signatures. Newly developed algorithms will enable robust autonomous navigation and control of the fleet in dynamic environments incorporating the multi-sensor data generated by the variety of mobile actors. The proposed SMART-AGENTS platform will use real-time 5G communication and edge computing providing new organizational structures to cope with scalability and integration of multiple devices/agents. It will enable a symbiosis of the complementary CPSs using a combination of equipment yielding efficiency and versatility of operation.