The project X-TEAM D2D (Extended ATM for Door-to-Door Travel) has been funded by SESAR JU in 2020 and completed its activities in 2022, pursuing and accomplishing the definition, development and initial assessment of a Concept of Operations (ConOps) for the seamless integration of ATM and air transport into an overall intermodal network, including other available transportation means (surface, water), to support the door-to-door connectivity, in up to 4 hours, between any location in Europe. The project addressed the ATM and air transport, including Urban Air Mobility (UAM), integration in the overall transport network serving urban and extended urban (up to regional level) mobility, specifically identifying and considering the transportation and passengers service scenarios expected for the near, medium and long-term future, i.e. for the project baseline (2025), intermediate (2035) and final (2050) time horizons. In this paper, the main outcomes from the project activities are summarized, with particular emphasis on the studies about the definition of future scenarios and use cases for the integration of the vertical transport with the surface transport towards integrated intermodal transport system and about identification of the barriers towards this goal. In addition, an outline is provided on the specific ConOps for the integration of ATM in intermodal transport infrastructure (i.e. the part of the overall ConOps devoted to integration of different transportation means) and on the specific ConOps for the integration of ATM in intermodal service to passengers (i.e. the specific component of the ConOps devoted to design of a unique service to passengers). Finally, the main outcomes are summarized from the validation of the proposed ConOps through dedicated simulations.
DOCUMENT
Seamless integration of air segment in the overall multimodal mobility chain is a key challenge to provide more efficient and sustainable transport services. Technology advances offer a unique opportunity to build a new generation of transport services able to match the evolving expectations and needs of society as a whole. In this context, the passenger-centric approach represents a method to inform the design of future mobility services, supporting quality of life, security and services to citizens traveling across Europe. Relying on the concepts of inclusive design, context of use and task analysis, in this article, we present a comprehensive methodological framework for the analysis of passenger characteristics to elicit features and requirements for future multimodal mobility services, including air leg, that are relevant from the perspective of passengers. The proposed methodology was applied to a series of specific use cases envisaged for three time horizons, 2025, 2035 and 2050, in the context of a European research project. Then, passenger-focused key performance indicators and related metrics were derived to be included in a validation step, with the aim of assessing the extent of benefit for passengers that can be achieved in the forecasted scenarios. The results of the study demonstrate the relevance of human variability in the design of public services, as well as the feasibility of personalized performance assessment of mobility services.
DOCUMENT
It is expected that future transportation technologies will positively impact how passengers travel to their destinations. Europe aims to integrate air transport into the overall multimodal transport network to provide better service to passengers, while reducing travel time and making the network more resilient to disruptions. This study presents an approach that investigates these aspects by developing a simulation platform consisting of different models, allowing us to simulate the complete door-to-door trajectory of passengers. To address the future potential, we devised scenarios considering three time horizons: 2025, 2035, and 2050. The experimental design allowed us to identify potential obstacles for future travel, the impact on the system’s resilience, and how the integration of novel technology affects proxy indicators of the level of service, such as travel time or speed. In this paper, we present for the first time an innovative methodology that enables the modelling and simulation of door-to-door travel to investigate the future performance of the transport network. We apply this methodology to the case of a travel trajectory from Germany to Amsterdam considering a regional and a hub airport; it was built considering current information and informed assumptions for future horizons. Results indicate that, with the new technology, the system becomes more resilient and generally performs better, as the mean speed and travel time are improved. Furthermore, they also indicate that the performance could be further improved considering other elements such as algorithmic governance.
DOCUMENT
It is expected that future transportation technologies will positively impact how passengers travel to their destinations. Europe aims to integrate air transport into the overall multimodal transport network to provide better service to passengers, while reducing travel time and making the network more resilient to disruptions. This study presents an approach that investigates these aspects by developing a simulation platform consisting of different models, allowing us to simulate the complete door-to-door trajectory of passengers. To address the future potential, we devised scenarios considering three time horizons: 2025, 2035, and 2050. The experimental design allowed us to identify potential obstacles for future travel, the impact on the system’s resilience, and how the integration of novel technology affects proxy indicators of the level of service, such as travel time or speed. In this paper, we present for the first time an innovative methodology that enables the modelling and simulation of door-to-door travel to investigate the future performance of the transport network. We apply this methodology to the case of a travel trajectory from Germany to Amsterdam considering a regional and a hub airport; it was built considering current information and informed assumptions for future horizons. Results indicate that, with the new technology, the system becomes more resilient and generally performs better, as the mean speed and travel time are improved. Furthermore, they also indicate that the performance could be further improved considering other elements such as algorithmic governance.
MULTIFILE
The project X-TEAM D2D (extended ATM for door-to-door travel) has been funded by SESAR JU in the framework of the research activities devoted to the investigation of integration of Air Traffic Management (ATM) and aviation into a wider transport system able to support the implementation of the door-to-door (D2D) travel concept. The project defines a concept for the seamless integration of ATM and Air Transport into an intermodal network, including other available transportation means, such as surface and waterways, to contribute to the 4 h door-to-door connectivity targeted by the European Commission in the ACARE SRIA FlightPath 2050 goals. In particular, the project focused on the design of a concept of operations for urban and extended urban (up to regional) integrated mobility, taking into account the evolution of transportation and passengers service scenarios for the next decades, according to baseline (2025), intermediate (2035) and final target (2050) time horizons. The designed ConOps encompassed both the transportation platforms integration concepts and the innovative seamless Mobility as a Service, integrating emerging technologies, such as Urban Air Mobility (e.g., electric vertical take-off and landing vehicles) and new mobility forms (e.g., micromobility vehicles) into the intermodal traffic network, including Air Traffic Management (ATM) and Unmanned Traffic Management (UTM). The developed concept has been evaluated against existing KPAs and KPIs, implementing both qualitative and quantitative performance assessment approaches, while also considering specific performance metrics related to transport integration efficiency from the passenger point of view, being the proposed solution designed to be centered around the passenger needs. The aim of this paper is to provide a description of the activities carried out in the project and to present at high level the related outcomes.
DOCUMENT
The EU project X-TEAM D2D focuses on future seamless door-to-door mobility, considering the experiences from Air Traffic Management and the currently available and possible future transport modalities in overall multimodal traffic until 2050. This paper deals with developing a Concept of Operations of an intermodal transport system with special consideration of the pabengers' satisfaction with up to 4-hour journeys. For this purpose, the influences of quality management systems and other organizational facilities on the quality of pabenger travel in the transport system were examined. In the study, integration of various management systems, like resources, traffic information, energy, fleet emergency calls, security and infrastructure, and applications such as weather information platforms and tracking systems, is expected.
DOCUMENT
The following paper presents a methodology we developed for addressing the case of a multi-modal network to be implemented in the future. The methodology is based on a simulation approach and presents some characteristics that make a challenge to be verified and validated. To overcome this limitation, we proposed a novel methodology that implies interaction with subjectmatter experts, revision of current data, collection and assessment of future performance and educated assumptions. With that methodology we could construct the complete passenger trajectory Door to door in Europe. The results indicate that the approach allows to approach infrastructure analysis at an early stage to have an initial estimation of the upper boundary of performance indicators. To exemplify this, we present the results for a case study in Europe.
DOCUMENT
The aim of this research/project is to investigate and analyze the opportunities and challenges of implementing AI technologies in general and in the transport and logistics sectors. Also, the potential impacts of AI at sectoral, regional, and societal scales that can be identified and chan- neled, in the field of transport and logistics sectors, are investigated. Special attention will be given to the importance and significance of AI adoption in the development of sustainable transport and logistics activities using intelligent and autonomous transport and cleaner transport modalities. The emphasis here is therefore on the pursuit of ‘zero emissions’ in transport and logistics at the urban/city and regional levels.Another goal of this study is to examine a new path for follow-up research topics related to the economic and societal impacts of AI technology and the adoption of AI systems at organizational and sectoral levels.This report is based on an exploratory/descriptive analysis and focuses mainly on the examination of existing literature and (empirical) scientific research publica- tions, previous and ongoing AI initiatives and projects (use cases), policy documents, etc., especially in the fields of transport and logistics in the Netherlands. It presents and discusses many aspects of existing challenges and opportunities that face organizations, activities, and individuals when adopting AI technology and systems.
DOCUMENT
X-TEAM D2D project is focused on integrating Air Traffic Management and Urban Air Mobility into an overall multimodal transport network to address the potential increase in efficiency of the overall transportation system in the future, considering the operational domain of the urban and extended urban environment up to a regional extent and passenger-centric perspective. This paper presents the analysis of the Door to Airport trajectory of business passengers until 2035. The results indicate the system's expected performance in 2035 under normal and disrupted scenarios providing insight on the expected impact of future technologies.
DOCUMENT
Predictive models and decision support toolsallow information sharing, common situational awarenessand real-time collaborative decision-making betweenairports and ground transport stakeholders. To supportthis general goal, IMHOTEP has developed a set of modelsable to anticipate the evolution of an airport’s passengerflows within the day of operations. This is to assess theoperational impact of different management measures onthe airport processes and the ground transport system. Twomodels covering the passenger flows inside the terminal andof passengers accessing and egressing the airport have beenintegrated to provide a holistic view of the passengerjourney from door-to-gate and vice versa.This paper describes IMHOTEP’s application at two casestudy airports, Palma de Mallorca (PMI) and London City(LCY), at Proof of Concept (PoC-level) assessing impactand service improvements for passengers, airport operatorsand other key stakeholders.For the first time onemeasurable process is created to open up opportunities forbetter communication across all associated stakeholders.Ultimately the successful implementation will lead to areduction of the carbon footprint of the passenger journeyby better use of existing facilities and surface transportservices, and the delay or omission of additional airportfacility capacities.
DOCUMENT