Only a few efforts have been made to define competencies for epidemiologists working in academic settings. Here we describe a multi-national effort to define competencies for epidemiologists who are increasingly facing emerging and potentially disruptive technological and societal health trends in academic research. During a 1,5 years period, we followed an iterative process that aimed to be inclusive and multi-national to reflect the various perspectives of the diverse group of epidemiologists. Competencies were developed by a consortium in a consensus-oriented process that spanned three main activities: two in-person interactive meetings in Amsterdam and Zurich and an online survey. In total, 93 meeting participants from 16 countries and 173 respondents from 19 countries contributed to the development of 31 competencies. These 31 competencies included 14 on "Developing a scientific question" and "Study planning", 12 on "Study conduct & analysis", 3 on "Overarching competencies" and 2 competencies on "Communication and translation". The process described here provides a consensus-based framework for defining and adapting the field. It should initiate a continuous process of thinking about competencies and the implications for teaching epidemiology to ensure that epidemiologists working in academic settings are well prepared for today's and tomorrow's health research.
MULTIFILE
Background: Although principles of the health promoting school (HPS) approach are followed worldwide, differences between countries in the implementation are reported. The aim of the current study was (1) to examine the implementation of the HPS approach in European countries in terms of different implementation indicators, that is, percentage of schools implementing the HPS approach, implementation of core components, and positioning on so‐called HPS‐related spectra, (2) to explore patterns of consistency between the implementation indicators across countries, and (3) to examine perceived barriers and facilitators to the implementation of the HPS approach across countries. Methods: This study analyzed data from a survey that was part of the Schools for Health in Europe network's Monitoring Task 2020. The survey was completed by HPS representatives of 24 network member countries. Results: Large variations exist in (the influencing factors for) the implementation of the HPS approach in European countries. Observed patterns show that countries with higher percentages of schools implementing the HPS approach also score higher on the implementation of the core components and, in terms of spectra, more toward implementing multiple HPS core components, add‐in strategies, action‐oriented research and national‐level driven dissemination. In each country a unique mix of barriers and facilitators was observed. Conclusion: Countries committed to implementing the HPS approach in as many schools as possible also seem to pay attention to the quality of implementation. For a complete and accurate measurement of implementation, the use of multiple implementation indicators is desirable.
DOCUMENT
Background Evidence about the impact of the COVID-19 pandemic on existing health inequalities is emerging. This study explored differences in mental health, sense of coherence (SOC), sense of community coherence (SOCC), sense of national coherence (SONC), and social support between low and high socioeconomic (SES) groups, and the predictive value of these predictors for mental health. participants and procedure A cross-sectional study was conducted using an online survey in the Netherlands in October 2021, comprising a total of 91 respondents (n = 41, low SES; n = 50, high SES). results There were no differences in mental health, SOC, SOCC, SONC, and social support between the groups. SOC was a predictor for mental health in both groups and SOCC for the low SES group. conclusions We found that both SOC and SOCC predict mental health during the pandemic. In the article we reflect on possible pathways for strengthening these resources for mental health.
DOCUMENT
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
The pressure on the European health care system is increasing considerably: more elderly people and patients with chronic diseases in need of (rehabilitation) care, a diminishing work force and health care costs continuing to rise. Several measures to counteract this are proposed, such as reduction of the length of stay in hospitals or rehabilitation centres by improving interprofessional and person-centred collaboration between health and social care professionals. Although there is a lot of attention for interprofessional education and collaborative practice (IPECP), the consortium senses a gap between competence levels of future professionals and the levels needed in rehabilitation practice. Therefore, the transfer from tertiary education to practice concerning IPECP in rehabilitation is the central theme of the project. Regional bonds between higher education institutions and rehabilitation centres will be strengthened in order to align IPECP. On the one hand we deliver a set of basic and advanced modules on functioning according to the WHO’s International Classification of Functioning, Disability and Health and a set of (assessment) tools on interprofessional skills training. Also, applications of this theory in promising approaches, both in education and in rehabilitation practice, are regionally being piloted and adapted for use in other regions. Field visits by professionals from practice to exchange experiences is included in this work package. We aim to deliver a range of learning materials, from modules on theory to guidelines on how to set up and run a student-run interprofessional learning ward in a rehabilitation centre. All tested outputs will be published on the INPRO-website and made available to be implemented in the core curricula in tertiary education and for lifelong learning in health care practice. This will ultimately contribute to improve functioning and health outcomes and quality of life of patients in rehabilitation centres and beyond.
Big data spelen een steeds grotere rol in de (semi)professionele sport. De hoeveelheid gegevens die opgeslagen wordt, groeit exponentieel. Sportbegeleiders (coaches, inspanningsfysiologen, sportfysiotherapeuten en sportartsen) maken steeds vaker gebruik van sensoren om sporters te monitoren. Tijdens trainingen en wedstrijden worden de hartslagen, afgelegde afstanden, snelheden en versnellingen van sporters gemeten. Het analyseren van deze data vormt een grote uitdaging voor het begeleidingsteam van de sporters. Sportbegeleiders willen big data graag inzetten om meer grip te krijgen op sportblessures. Blessures kunnen namelijk desastreuze gevolgen hebben voor teamprestaties en de carrière van (semi)professionele sporters. In totaal stopt maar liefst 33% van de topsporters door blessures met hun sportloopbaan. Daarnaast is uitval door blessures een belangrijke oorzaak van stagnatie van talentontwikkeling. Het lectoraat Sportzorg van de Hogeschool van Amsterdam heeft veel expertise op het gebied van blessurepreventie in de sport. Sportbegeleiders hebben het lectoraat Sportzorg benaderd om antwoord te krijgen op de onderzoeksvraag: Wat zijn op data gebaseerde indicatoren om sportblessures te voorspellen? Deze onderzoeksvraagstelling is opgesplitst in de volgende deelvragen: 1. Hoe kan met sensoren relevante data van sporters verzameld worden om de sportbelasting in kaart te brengen? 2. Welke parameters kunnen blessures voorspellen? 3. Hoe kunnen deze parameters op betekenisvolle en eenvoudige wijze naar sportbegeleiders en sporters teruggekoppeld worden? Het project resulteert in de volgende projectresultaten: - Een overzicht van nauwkeurige en gebruiksvriendelijke sensoren om sportbelasting in kaart te brengen - Een overzicht van relevante parameters die blessures kunnen voorspellen - Een online tool dat per sporter aangeeft of de sporter wel of niet training- of wedstrijdfit is Bij dit project zijn de volgende organisaties betrokken: Hogeschool van Amsterdam, Universiteit Leiden, VUmc, Rijksuniversiteit Groningen (RuG), Amsterdam Institute of Sport Science (AISS), Johan Sports, Centrum voor Topsport en Onderwijs (CTO) Amsterdam, Koninklijke Nederlandse Voetbalbond (KNVB), de Nederlandse Vereniging voor Fysiotherapie in de Sport (NVFS), VV Noordwijk (voetbalclub) en Black Eagles (basketbalclub).