Heart-rate changes after transition from a supine to a standing posture were measured in 12 hypertensive and 12 normotensive primigravid women, in their last trimester of gestation. The subjects beat-to-beat heart-rate (HR) changes were recorded on both an ordinary cardiotocograph and on magnetic tape. The hypertensive patient group (1) reached an HR-maximum after standing up in a significantly shorter period of time and (2) had a significantly lower HR during 1 min erect posture. A population threatened by pregnancy-induced hypertension might be detected by using the non-invasive method of recording the maternal beat-to-beat heart-rate changes after transition to the standing posture, even before the onset of hypertension
DOCUMENT
RATIONALE: Disturbed protein metabolism may result in malnutrition. A non-invasive low cost clinical tool to measure protein metabolism is lacking. Explorative research (n=1) with a newly developed non-invasive 13C-protein breath test suggested a decrease in protein oxidation after a protein restricted diet. Now, we aimed to test the effect of protein restriction in more subjects, to assess sensitivity of the test.METHODS: In this exploratory study, 14 healthy male subjects (23±3 y) participated. Habitual intake was assessed by a 4-day food diary. Next, subjects were instructed to use a 4-day isocaloric protein restricted diet (0.25 g protein/kg bw/day). After an overnight fast, a 30 g naturally enriched 13C-milk protein test drink was consumed, followed by collection of breath samples up to 330 min. Protein oxidation was analyzed by Isotope Ratio Mass Spectrometry. 24-h urine was collected on day 4 of the habitual diet, and on every day of the 4-day protein restricted diet, to assess actual change in protein intake.RESULTS: After the protein restricted diet, 30.2%±7.7 of the 30 g 13C-milk protein was oxidized over 330 min, compared to 30.6%±6.2 (NS) after the subject’s habitual diet (1.4±0.3 g protein/kg bw/day). Within subjects, both increase and decrease in oxidation was found. During the 4-day protein restricted diet, urinary urea:creatinine ratio decreased by 56%±10, consistent with a reduction in protein intake of 44%±15 (g/day) and 53%±12 (g/kg bw/day), based on urea and food diary, respectively.CONCLUSIONS: The breath test shows variation within subjects and between diets, which could be related to the sensitivity of the test. We cannot explain the variation by the measured variables. Alternatively, our results may implicate that in some of our subjects, protein intake did not sufficiently decrease to levels that could alter protein metabolism.
DOCUMENT
RATIONALE: Disturbed protein metabolism may result in malnutrition. A non-invasive low cost clinical tool to measure protein metabolism is lacking. Explorative research (n=1) with a newly developed non-invasive 13C-protein breath test suggested a decrease in protein oxidation after a protein restricted diet. Now, we aimed to test the effect of protein restriction in more subjects, to assess sensitivity of the test.METHODS: In this exploratory study, 14 healthy male subjects (23±3 y) participated. Habitual intake was assessed by a 4-day food diary. Next, subjects were instructed to use a 4-day isocaloric protein restricted diet (0.25 g protein/kg bw/day). After an overnight fast, a 30 g naturally enriched 13C-milk protein test drink was consumed, followed by collection of breath samples up to 330 min. Protein oxidation was analyzed by Isotope Ratio Mass Spectrometry. 24-h urine was collected on day 4 of the habitual diet, and on every day of the 4-day protein restricted diet, to assess actual change in protein intake.RESULTS: After the protein restricted diet, 30.2%±7.7 of the 30 g 13C-milk protein was oxidized over 330 min, compared to 30.6%±6.2 (NS) after the subject’s habitual diet (1.4±0.3 g protein/kg bw/day). Within subjects, both increase and decrease in oxidation was found. During the 4-day protein restricted diet, urinary urea:creatinine ratio decreased by 56%±10, consistent with a reduction in protein intake of 44%±15 (g/day) and 53%±12 (g/kg bw/day), based on urea and food diary, respectively.CONCLUSIONS: The breath test shows variation within subjects and between diets, which could be related to the sensitivity of the test. We cannot explain the variation by the measured variables. Alternatively, our results may implicate that in some of our subjects, protein intake did not sufficiently decrease to levels that could alter protein metabolism.
DOCUMENT
This study presents an automated method for detecting and measuring the apex head thickness of tomato plants, a critical phenotypic trait associated with plant health, fruit development, and yield forecasting. Due to the apex's sensitivity to physical contact, non-invasive monitoring is essential. This paper addresses the demand for automated, contactless systems among Dutch growers. Our approach integrates deep learning models (YOLO and Faster RCNN) with RGB-D camera imaging to enable accurate, scalable, and non-invasive measurement in greenhouse environments. A dataset of 600 RGB-D images captured in a controlled greenhouse, was fully preprocessed, annotated, and augmented for optimal training. Experimental results show that YOLOv8n achieved superior performance with a precision of 91.2 %, recall of 86.7 %, and an Intersection over Union (IoU) score of 89.4 %. Other models, such as YOLOv9t, YOLOv10n, YOLOv11n, and Faster RCNN, demonstrated lower precision scores of 83.6 %, 74.6 %, 75.4 %, and 78 %, respectively. Their IoU scores were also lower, indicating less reliable detection. This research establishes a robust, real-time method for precision agriculture through automated apex head thickness measurement.
DOCUMENT
Standard SARS-CoV-2 testing protocols using nasopharyngeal/throat (NP/T) swabs are invasive and require trained medical staff for reliable sampling. In addition, it has been shown that PCR is more sensitive as compared to antigen-based tests. Here we describe the analytical and clinical evaluation of our in-house RNA extraction-free saliva-based molecular assay for the detection of SARS-CoV-2. Analytical sensitivity of the test was equal to the sensitivity obtained in other Dutch diagnostic laboratories that process NP/T swabs. In this study, 955 individuals participated and provided NP/T swabs for routine molecular analysis (with RNA extraction) and saliva for comparison. Our RT-qPCR resulted in a sensitivity of 82,86% and a specificity of 98,94% compared to the gold standard. A false-negative ratio of 1,9% was found. The SARS-CoV-2 detection workflow described here enables easy, economical, and reliable saliva processing, useful for repeated testing of individuals.
LINK
Aim: To investigate the effects of exercise on salivary concentrations of inflammatory markers by analyzing a panel of 25 inflammatory markers in subjects who had participated in bicycle ergometer tests varying in workload and hydration status. Methods: Fifteen healthy young men (20-35 years) had performed 4 different exercise protocols of 1 hour duration in a randomly assigned cross-over design, preceded by a rest protocol. Individual workloads depended on participant's pre-assessed individual maximum workload (Wmax): rest (protocol 1), 70% Wmax in hydrated (protocol 2) and dehydrated (protocol 3) state, 50% Wmax (protocol 4) and intermittent 85%/55% Wmax in 2 min blocks (protocol 5). Saliva samples were collected before (T0) and immediately after exercise (T1), and at several time points after exercise (2 hours (T3), 3 hours (T4), 6 hours (T5) and 24 hours (T6)). Secretory Leukocyte Protease Inhibitor (SLPI), Matrix Metallopeptidase-9 (MMP-9) and lactoferrin was analyzed using a commercial ELISA kit, a panel of 22 cytokines and chemokines were analyzed using a commercial multiplex immunoassay. Data was analyzed using a multilevel mixed linear model, with multiple test correction. Results: Among a panel of 25 inflammatory markers, SLPI concentrations were significantly elevated immediately after exercise in all protocols compared to rest and higher concentrations reflected the intensity of exercise and hydration status. MMP-9 showed a significant increase in the 70% Wmax dehydrated, 50% Wmax and intermittent protocols. Conclusions: Salivary concentrations of SLPI and MMP-9 seem associated with exercise intensity and hydration status and may offer non-invasive biomarkers to study (local) inflammatory responses to different exercise intensities in human studies. sa
DOCUMENT
Saliva diagnostics have become increasingly popular due to their non-invasive nature and patient-friendly collection process. Various collection methods are available, yet these are not always well standardized for either quantitative or qualitative analysis. In line, the objective of this study was to evaluate if measured levels of various biomarkers in the saliva of healthy individuals were affected by three distinct saliva collection methods: 1) unstimulated saliva, 2) chew stimulated saliva, and 3) oral rinse. Saliva samples from 30 healthy individuals were obtained by the three collection methods. Then, the levels of various salivary biomarkers such as proteins and ions were determined. It was found that levels of various biomarkers obtained from unstimulated saliva were comparable to those in chew stimulated saliva. The levels of potassium, sodium, and amylase activity differed significantly among the three collection methods. Levels of all biomarkers measured using the oral rinse method significantly differed from those obtained from unstimulated and chew-stimulated saliva. In conclusion, both unstimulated and chew-stimulated saliva provided comparable levels for a diverse group of biomarkers. However, the results obtained from the oral rinse method significantly differed from those of unstimulated and chew-stimulated saliva, due to the diluted nature of the saliva extract.
DOCUMENT
Non-invasive, rapid, on-site detection and identification of body fluids is highly desired in forensic investigations. The use of fluorescence-based methods for body fluid identification, have so far remain relatively unexplored. As such, the fluorescent properties of semen, serum, urine, saliva and fingermarks over time were investigated, by means of fluorescence spectroscopy, to identify specific fluorescent signatures for body fluid identification. The samples were excited at 81 different excitation wavelengths ranging from 200 to 600 nm and for each excitation wavelength the emission was recorded between 220 and 700 nm. Subsequently, the total emitted fluorescence intensities of specific fluorescent signatures in the UV–visible range were summed and principal component analysis was performed to cluster the body fluids. Three combinations of four principal components allowed specific clustering of the body fluids, except for fingermarks. Blind testing showed that 71.4% of the unknown samples could be correctly identified. This pilot study shows that the fluorescent behavior of ageing body fluids can be used as a new non-invasive tool for body fluid identification, which can improve the current guidelines for the detection of body fluids in forensic practice and provide the robustness of methods that rely on fluorescence.
MULTIFILE
Background: Body composition measurements provide importanti nformation about physical fitness and nutritional status. People with severe intellectual and visual disabilities (SIVD) have an increased risk for altered body composition. Bioelectrical impedance analysis (BIA) has been evidenced as a reliable and non-invasive method to assess body composition in healthy persons and various patient populations; however, currently, there is no feasible method available to determine body composition in people with SIVD.In this study, therefore, we aimed to assess the feasibility of BIA measurements in persons with SIVD. Methods: In 33 participants with SIVD and Gross Motor Functioning Classification System (GMFCS) Scale I, II, III, or IV, two BIA measurements were sequentially performed employing Resistance and Reactance in Ohm and fat-free mass (FFM) in kg as outcome variables, utilizing the Bodystat QuadScan 4000. Feasibility was considered sufficient if >=80% of the first measurement was performed successfully. Agreement between two repeated measurements was determined by using the paired t-test and Intraclass Correlation Coefficient (ICC; two way random, absolute agreement). Bland–Altman analyses were utilized to determine limits of agreement (LOAs) and systematic error. Agreement was considered acceptable if LOAs were <10% of the mean of the first measurement.
DOCUMENT
Assessment and monitoring of fat-free mass (FFM) is of clinical importance, because FFM is reflective of body cell mass, the total mass of protein-rich, metabolically active cells which is affected during malnutrition and therefore related to clinical outcome.Bioelectrical impedance analysis (BIA) is a non-invasive, portable and inexpensive method to assess body composition. Currently validity of BIA in head and neck cancer patients is unknown. Therefore, we tested our hypothesis that BIA, using the Geneva equation, is a valid method to assess FFM in head and neck cancer patients.
DOCUMENT