The Andean lupin (Lupinus mutabilis) is one of the lost crops of Incas and has been grown in South America and as a food crop for thousands of years. The seeds are the main source of commercial value regarding the high content of oil (about 20%), protein (about 43%) and carbohydrates (about 33%). A European Union H2020 project, LIBBIO, aims to develop and optimize the breeding and cropping of the Andean lupin in the Europe, and to process the lupin seeds for new and high-value products for consumers and for incorporation into otherproducts. This study works at optimizing the oil extraction from the lupin seeds using supercritical carbon dioxide (scCO2), which has been tested for lupin oil extraction and is advantageous over organic extractants due to the mild operating temperature, costeffectiveness, nontoxicity, and easy post-separation.In the study designed by response surface methodology, the operating pressure,temperature, scCO2 flowrate, and sample mesh size, were investigated on their effect on the oil extraction efficiency. The pressure, scCO2 flowrate and mesh size were found to affect the extraction efficiency significantly. The higher the pressure and the smaller the mesh, the more oil was extracted over a specific period. Optimally about 85% of the oil was extracted by scCO2 compared with conventional Soxhlet extraction using hexane as the extractant. Oleicacid (46%) and Linoleic acid (32%) are the two main fatty acids in the extracted oil. About 80% of the fatty acids are unsaturated. The stearic acid is one of the main saturated fatty acids, which has relatively positive effects on human health to others. The pressure was found to significantly affect the fractions of the saturated and unsaturated fatty acids. The content of tocopherols in the extracted oil ranged from 1 to 20 mg/100g oil, which is comparable withliterature value.
Concepts to protect wood from factors like ultraviolet (UV) radiation, water and wood-decaying fungi with the help of fungi exist in different variants. The idea to treat wood with the help of linseed oil and the living fungus Aureobasidium pullulans originated in 1996 during an European project assessing sustainable protection systems (Sailer et al., 2010). At that time, wood impregnated with natural oils resulted surprisingly in an evenly dark colored surface. These color changes were usually associated with irregular discoloration and staining and were further investigated. It has been shown that the fungus Aureobasidium pullulans was growing on surfaces treated with linseed oil. The fact that Aureobasium pullulans reproducibly grows on water repellent linseed surfaces in many regions around the world makes it suitable for use in a wide range of applications. Research did show that Aureobasidium pullulans produces pigments and binders on its own. This contribution documents the investigation to, identify the possibilities of biological wood surface treatment with Aureobasidium. The combination of the hydrophobizing effect of linseed oil and the surface treatment with the so-called biofinish creates an aesthetically appealing dark living surface, which significantly prolongs the life of wood outdoors and reduces maintenance costs. Since the idea has been developed into an industrially applicable process (Xyhlo biofinish, 2018). Using this concept, building components e.g. façades can be protected with a biological and functional coating thereby contribution to lessen the environmental impact of buildings.
MULTIFILE
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
This project is to investigate Circular Calcium Carbonate (CCC) that is produced by pyrolysis from paper waste in an innovative process developed by the company Alucha Management B.V. (Alucha) located in Arnhem. Although there is a need to use circular materials in rubber formulations it has not yet been proven that the replacement of mined white fillers (e.g. Kaolin, Calcium Carbonate) by CCC in rubber applications is possible without a significant impact on the processing properties and part performance. The scope of this project is to investigate the use of Circular Calcium Carbonate (CCC) in various rubber formulations and articles made thereof.
The SMEs participating in the NUTSHELL-project approached Avans to assist them in evaluating the pyrolytic extraction of valuable oils from Cashew Nut Shell (CNS). CNS is waste generated in the production of edible cashew nut. For the 2017 the predicted cashew nuts crop yield is 3 million tons; resulting to 2 million tons of CNS waste. CNS contains circa 30-35% brown viscous liquid, called Cashew Nut Shell Liquid (CNSL) , this is a natural resin containing valuable components, for example cardanol, cardol and anacardic acid. CNSL and its derivatives have several industrial uses as biobased additives, polymeric building blocks and biodiesel. Part of the CNSL can be extracted during the roasting process prior to separating the shell and nut kernel. The shell waste still has a relatively high CNSL concentration that can be isolated by solvents or pressing (expeller). Expeller process is simple and not capital-intensive; therefore it is commonly used in a small scale production. The main disadvantages of the method are the relatively high energy consumption and its low oil recovery, the level of oil in the press-cake remains 3 to 5%. The residual oil produces harmful gases in burning hence hindering the use as fuel. Also the resulting cake is too dense to be further processed to charcoal or other useful application; hence forming a significant waste stream. One of the main advantages of the pyrolysis route as envisaged by the SME partners is using the total CNS biomass. The objective of this project is to study a process where in the pyrolytic isolation of CNSL oils is achieved and the remaining cake can be further pyrolysed to form charcoal or biochar.