New technologies or approaches are being widely developed and proposed to be deployed in real energy systems to improve desired objectives; however, supporting decision making processes to select best solutions in terms of performance and efficiently following cost-benefit analysis require some sort of scientific evidence based tools. These tools should be reliable, robust, and capable of demonstrating the behaviour and impact of newly developed devices or algorithms in different pre- defined scenarios. Therefore, new approaches and technologies need to be tested and verified using a safe laboratory test environment.This report is about the development and realisation of some major tools and reliable methods to calculate risks and opportunities for integrating of new energy resources into the European electricity grid. Hanze University Groningen and Politecnico di Torino worked together within the STORE&GO project sharing laboratories, knowledge, hardware facilities and researchers for the realisation of the characterisation and mathematical modelling of renewable resources. Needed to realize a stable and reliable environment for remote physical hardware in the loop simulations.For this realisation we started with the local characterisation of a PV-Field and a PEM electrolyser at Entrance Groningen by logging and measuring the electric behaviour and specific device parameters to integrate and convert these into working mathematical models of a PV-Field and electrolyser prosumer. After testing and evaluating these models by comparing the results with the real-time measurements, these test and modelling is also realised from the remote laboratory in Torino. To achieve dynamical physical hardware we also realised dynamic mathematical model(s) with real-time functionality to interact directly with the remote electrolyser. To connect both the laboratories with full duplex communication functionalities between physical hardware and models we have also realized a network which is able to share network resources on both local and remote sites.
Purpose: To determine the most effective practices for quadriceps strengthening after ACL reconstruction. Methods: An electronic search has been performed for the literature appearing from January 1990 to January 2012. Inclusion criteria were articles written in English, German or Dutch with unilateral ACL-reconstructed patients older than 13 years, RCT rehabilitation programmes containing muscle strengthening, protocol described in detail and time frame of measurements reported. Quadriceps muscle strength and patient-reported outcomes were the endpoints. Included studies were assessed on their methodological quality using the CONSORT Checklist. Results: From 645 identified studies, 10 met the inclusion criteria. Seven studies found an increase in quadriceps strength after intervention programmes regardless of type of training. An eccentric exercise programme showed significantly better values for isometric quadriceps strength compared to a concentric exercise programme. The Tegner activity scale showed a significant increase in activity level for all training programmes. The Cincinnati Knee Rating System showed significant improvements in particular for the neuromuscular training group. Conclusions: The evidence from this review indicates that eccentric training may be most effective to restore quadriceps strength, but full recovery may not be achieved with current rehabilitation practices. Neuromuscular training incorporating motor learning principles should be added to strengthening training to optimise outcome measurements. Level of evidence: II. © 2013 Springer-Verlag Berlin Heidelberg.
Aim: Optimise a set of exposure factors, with the lowest effective dose, to delineate spinal curvature with the modified Cobb method in a full spine using computed radiography (CR) for a 5-year-old paediatric anthropomorphic phantom.Methods: Images were acquired by varying a set of parameters: positions (antero-posterior (AP), posteroanterior (PA) and lateral), kilo-voltage peak (kVp) (66-90), source-to-image distance (SID) (150 to 200cm), broad focus and the use of a grid (grid in/out) to analyse the impact on E and image quality(IQ). IQ was analysed applying two approaches: objective [contrast-to-noise-ratio/(CNR] and perceptual, using 5 observers. Monte-Carlo modelling was used for dose estimation. Cohen’s Kappa coefficient was used to calculate inter-observer-variability. The angle was measured using Cobb’s method on lateralprojections under different imaging conditions.Results: PA promoted the lowest effective dose (0.013 mSv) compared to AP (0.048 mSv) and lateral (0.025 mSv). The exposure parameters that allowed lower dose were 200cm SID, 90 kVp, broad focus and grid out for paediatrics using an Agfa CR system. Thirty-seven images were assessed for IQ andthirty-two were classified adequate. Cobb angle measurements varied between 16°±2.9 and 19.9°±0.9.Conclusion: Cobb angle measurements can be performed using the lowest dose with a low contrast-tonoise ratio. The variation on measurements for this was ±2.9° and this is within the range of acceptable clinical error without impact on clinical diagnosis. Further work is recommended on improvement tothe sample size and a more robust perceptual IQ assessment protocol for observers.
Logistics represents around 10-11% of global CO2 emissions, around 75% of which come from road freight transport. ‘The European Green Deal’ is calling for drastic CO2 reduction in this sector. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and automatic vehicle technology. Another promising way to reach these environmental ambitions, without excessive technological investments, is the deployment of SUPER ECO COMBI’s (SEC). SEC is the umbrella name for multiple permutations of 32 meter, 70 tons, road-train combinations that can carry the payload-equivalent of 2 normal tractor-semitrailer combinations and even 3 rigid trucks. To fully deploy a SEC into the transport system the compliance with the existing infrastructure network and safety needs to be guaranteed; i.e. to deploy a specific SEC we should be able to determine which SEC-permutation is most optimal on specific routes with respect to regulations (a.o. damage to the pavement/bridges), the dimensions of specific infrastructures (roundabouts, slopes) and safety. The complexity of a SEC compared to a regular truck (double articulation, length) means that traditional optimisation methods are not applicable. The aim of this project is therefore to develop a first methodology enabling the deployment of the optimal SEC permutation. This will help transport companies (KIEM: Ewals) and trailer manufactures (KIEM: Emons) to invest in the most suitable designs for future SEC use. Additionally the methodology will help governments to be able to admit specific SEC’s to specific routes. The knowledge gained in this project will be combined with the knowledge of the broader project ENVELOPE (NWA-IDG). This will be the start of broader research into an overall methodology of deploying optimal vehicle combinations and a new regulatory framework. The knowledge will be used in master courses on vehicle dynamics.
Entangled Machines is a project by Mariana Fernández Mora that interrogates the colonial and extractive legacies underpinning artificial intelligence (AI). By introducing slowness and digital kinship as critical frameworks, the project reconceptualises AI as embedded within intricate social and ecological networks, thereby contesting dominant narratives of efficiency and optimisation. Through participatory, practice-based methodologies such as the Material Playground, the project integrates feminist and non-Western epistemologies to articulate alternative models for ethical, sustainable, and equitable AI practices. Over a four-year period, Entangled Machines develops theory, engages diverse communities, and produces artistic outputs to reimagine human-AI interactions. In collaboration with partners including ARIAS Amsterdam, Archival Consciousness, and the Sandberg Institute, the research seeks to foster decolonial and interdisciplinary approaches to AI. Its culmination will be an “Anarchive” – a curated assemblage of artistic, theoretical, and archival outputs – that serves as a resource for rethinking AI’s socio-political and ecological impacts.
CRISPR/Cas genome engineering unleashed a scientific revolution, but entails socio-ethical dilemmas as genetic changes might affect evolution and objections exist against genetically modified organisms. CRISPR-mediated epigenetic editing offers an alternative to reprogram gene functioning long-term, without changing the genetic sequence. Although preclinical studies indicate effective gene expression modulation, long-term effects are unpredictable. This limited understanding of epigenetics and transcription dynamics hampers straightforward applications and prevents full exploitation of epigenetic editing in biotechnological and health/medical applications.Epi-Guide-Edit will analyse existing and newly-generated screening data to predict long-term responsiveness to epigenetic editing (cancer cells, plant protoplasts). Robust rules to achieve long-term epigenetic reprogramming will be distilled based on i) responsiveness to various epigenetic effector domains targeting selected genes, ii) (epi)genetic/chromatin composition before/after editing, and iii) transcription dynamics. Sustained reprogramming will be examined in complex systems (2/3D fibroblast/immune/cancer co-cultures; tomato plants), providing insights for improving tumor/immune responses, skin care or crop breeding. The iterative optimisations of Epi-Guide-Edit rules to non-genetically reprogram eventually any gene of interest will enable exploitation of gene regulation in diverse biological models addressing major societal challenges.The optimally balanced consortium of (applied) universities, ethical and industrial experts facilitates timely socioeconomic impact. Specifically, the developed knowledge/tools will be shared with a wide-spectrum of students/teachers ensuring training of next-generation professionals. Epi-Guide-Edit will thus result in widely applicable effective epigenetic editing tools, whilst training next-generation scientists, and guiding public acceptance.