Studies about clinical pain in schizophrenia are rare. Conclusions on pain sensitivity in people with schizophrenia are primarily based on experimental pain studies. This review attempts to assess clinical pain, that is, everyday pain without experimental manipulation, in people with schizophrenia. PubMed, PsycINFO, Embase.com, and Cochrane were searched with terms related to schizophrenia and pain. Methodological quality was assessed with the Mixed Methods Appraisal Tool. Fourteen studies were included. Persons with schizophrenia appear to have a diminished prevalence of pain, as well as a lower intensity of pain when compared to persons with other psychiatric diseases. When compared to healthy controls, both prevalence and intensity of pain appear to be diminished for persons with schizophrenia. However, it was found that this effect only applies to pain with an apparent medical cause, such as headache after lumbar puncture. For less severe situations, prevalence and intensity of pain appears to be comparable between people with schizophrenia and controls. Possible underlying mechanisms are discussed. Knowledge about pain in schizophrenia is important for adequate pain treatment in clinical practice. Perspective This review presents a valuable insight into clinical pain in people with schizophrenia
Phantom limb pain following amputation is highly prevalent as it affects up to 80% of amputees. Many amputees suffer from phantom limb pain for many years and experience major limitations in daily routines and quality of life. Conventional pharmacological interventions often have negative side-effects and evidence regarding their long-term efficacy is low. Central malplasticity such as the invasion of areas neighbouring the cortical representation of the amputated limb contributes to the occurrence and maintenance of phantom limb pain. In this context, alternative, non-pharmacological interventions such as mirror therapy that are thought to target these central mechanisms have gained increasing attention in the treatment of phantom limb pain. However, a standardized evidence-based treatment protocol for mirror therapy in patients with phantom limb pain is lacking, and evidence for its effectiveness is still low. Furthermore, given the chronic nature of phantom limb pain and suggested central malplasticity, published studies proposed that patients should self-deliver mirror therapy over several weeks to months to achieve sustainable effects. To achieve this training intensity, patients need to perform self-delivered exercises on a regular basis, which could be facilitated though the use of information and communication technology such as telerehabilitation. However, little is known about potential benefits of using telerehabilitation in patients with phantom limb pain, and controlled clinical trials investigating effects are lacking. The present thesis presents the findings from the ‘PAtient Centered Telerehabilitation’ (PACT) project, which was conducted in three consecutive phases: 1) creating a theoretical foundation; 2) modelling the intervention; and 3) evaluating the intervention in clinical practice. The objectives formulated for the three phases of the PACT project were: 1) to conduct a systematic review of the literature regarding important clinical aspects of mirror therapy. It focused on the evidence of applying mirror therapy in patients with stroke, complex regional pain syndrome and phantom limb pain. 2) to design and develop a clinical framework and a user-centred telerehabilitation for mirror therapy in patients with phantom limb pain following lower limb amputation. 3) to evaluate the effects of the clinical framework for mirror therapy and the additional effects of the teletreatment in patients with phantom limb pain. It also investigated whether the interventions were delivered by patients and therapists as intended.
BackgroundTranscutaneous vagal nerve stimulation has analgesic potential and might be elicited by abdominally administered low-frequency vibrations. The objective was to study the safety and effect of a combination of music and abdominally administered low-frequency vibrations on pain intensity in elderly patients with chronic musculoskeletal pain.MethodsThis trial was an international multicenter, randomized controlled pilot study. Patients at age ≥ 65 years with musculoskeletal pain for ≥ 3 months and a daily pain score ≥ 4 out of 10 were recruited at three centers. They were randomized to receive either a combination of music and low-frequency (20–100 Hz) vibrations administered to the abdomen, or a combination with the same music but with higher frequency (200–300 Hz) vibrations administered to the abdomen. Low-frequency vibrations were expected to result in pain reduction measured with a numeric pain rating scale (NRS). Patients in both groups received eight treatments of the music combined with the vibrations in three weeks. Primary outcomes were safety (Serious Adverse Events) and pain intensity measured at baseline, after the last treatment and at six weeks follow-up. Multilevel linear model analyses were performed to study group and time effects.ResultsA total of 45 patients were analyzed according to intention-to-treat principle. After 344 treatments, 1 Adverse Event was found related to the intervention, while 13 Adverse Events were possibly related. A multilevel linear model showed that the interaction effect of group by time did not predict pain intensity (F[1, 45.93] = 0.002, p = 0.97) when comparing pain intensity at baseline, after the last treatment and at follow-up.ConclusionsThe combination of music and abdominally administered vibrations was found to be safe and well tolerated by the elderly patients. However, over time, neither the low-frequency treatment group nor the high-frequency treatment group provided clinically meaningful pain relief. There is no evidence that the low-frequency treatment elicited vagal nerve stimulation.
MULTIFILE
To decrease the environmental impact caused by the construction sector, biobased materials need to be further developed to allow better integration and acceptance in the market. Mycelium composites are innovative products, with intrinsic properties which rise the attention of architects, designers and industrial companies. Until now, research has focused on the mechanical properties of mycelium products. The aim has been improving their mechanical strength, to achieve wider application in the construction sector. Alongside this, to introduce mycelium composites to a wider market, the aesthetic experience of the public also needs to be considered. In the context of this proposal, it is argued that users of biobased products can shift their attitudes towards their surroundings by adjusting to the visual aesthetics within their environment or products they surround themselves with (Hekkert, 1997). This can be further attributed to colours which can be experienced as warm or cold, aggressive or inviting, leading to experiences that may include pleasure or displeasure indicating the future success of the bio based product. Mycelium composites can be used as building materials, but also as interior design materials, therefore visible to its user. It is to determine the appropriate methodologies to confer colour to mycelium composites that the companies Impershield and Dorable came together to form the consortium for the present project. The investigated ways are: 1. Through the preliminary colouring of fibres and their use as substrate for mycelium growth 2. The surface treatment of the final product. The Centre of Expertise BioBased Economy (CoEBBE) and the Centre of Applied Research for Art and Design (CARADT) will be guiding the research through their experience with mycelium composites. This project will lay the basis to enhance visual appearance of mycelium composites, with the utilization of natural pigments, natural paints and coatings.
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.
The ENCHANT project aims to clarify the differences between circular Calcium Carbonate (CCC) and grounded Calcium Carbonate (GCC), in order to expand the applications of the circular alternative CCC in the paint and coating industry. CCC is produced by pyrolysis from paper waste in an innovative process developed by the company Alucha Works B.V., and it can be applied again as filler or binder in consumer products (e.g. plastics, rubbers, paints and coatings) in a cost-effective manner. Products containing CCC have a higher content of circular resources, which minimizes their carbon footprint, and reduces the exploitation of primary resources. Performances of CCC in oil-based paints, however, is not optimal, due to a larger oil adsorption as compared to GCC. A physical and chemical characterization of CCC and GCC samples, including competitive oil-water adsorption measurements, would help Alucha to formulate a solution to match the properties of CCC and GCC, either adjusting the recycling process or applying a surface modification treatment to CCC. This would enable Alucha to expand the market for CCC, making oil-based formulation products more circular.