In dit project wordt er voortgeborduurd op de kennis en expertise omtrent beweeginterventies die een brug van zorg naar bewegen slaan (sportzorgprogramma’s). Hier is er veel expertise opgedaan binnen Physical Activity Centre (PAC), een project vanuit het Lectoraat Fysieke Activiteit en Gezondheid van Fontys Sporthogeschool. PAC is ontstaan vanuit twee invalshoeken. Enerzijds als een verbeteractie om een optimale koppeling te realiseren tussen de theoretische kennis (medisch-biologisch en gedragswetenschappelijke theorieën) en het praktisch handelen van een student. Anderzijds was er de maatschappelijke vraag naar ‘beweegaanbod op maat’ omtrent de problematiek rondom chronische ziekten, vergrijzing en bewegingsarmoede.
DOCUMENT
Objective: To evaluate the preliminary effectiveness of a goal-directed movement intervention using a movement sensor on physical activity of hospitalized patients. Design: Prospective, pre-post study. Setting: A university medical center. Participants: Patients admitted to the pulmonology and nephrology/gastro-enterology wards. Intervention: The movement intervention consisted of (1) self-monitoring of patients' physical activity, (2) setting daily movement goals and (3) posters with exercises and walking routes. Physical activity was measured with a movement sensor (PAM AM400) which measures active minutes per day. Main measures: Primary outcome was the mean difference in active minutes per day pre- and post-implementation. Secondary outcomes were length of stay, discharge destination, immobility-related complications, physical functioning, perceived difficulty to move, 30-day readmission, 30-day mortality and the adoption of the intervention. Results: A total of 61 patients was included pre-implementation, and a total of 56 patients was included post-implementation. Pre-implementation, patients were active 38 ± 21 minutes (mean ± SD) per day, and post-implementation 50 ± 31 minutes per day (Δ12, P = 0.031). Perceived difficulty to move decreased from 3.4 to 1.7 (0-10) (Δ1.7, P = 0.008). No significant differences were found in other secondary outcomes. Conclusions: The goal-directed movement intervention seems to increase physical activity levels during hospitalization. Therefore, this intervention might be useful for other hospitals to stimulate inpatient physical activity.
DOCUMENT
OBJECTIVE: To investigate the level of agreement of the behavioural mapping method with an accelerometer to measure physical activity of hospitalized patients. DESIGN: A prospective single-centre observational study. SETTING: A university medical centre in the Netherlands. SUBJECTS: Patients admitted to the hospital. MAIN MEASURES: Physical activity of participants was measured for one day from 9 AM to 4 PM with the behavioural mapping method and an accelerometer simultaneously. The level of agreement between the percentages spent lying, sitting and moving from both measures was evaluated using the Bland-Altman method and by calculating Intraclass Correlation Coefficients. RESULTS: In total, 30 patients were included. Mean (±SD) age was 63.0 (16.8) years and the majority of patients were men (n = 18). The mean percentage of time (SD) spent lying was 47.2 (23.3) and 49.7 (29.8); sitting 42.6 (20.5) and 40.0 (26.2); and active 10.2 (6.1) and 10.3 (8.3) according to the accelerometer and observations, respectively. The Intraclass Correlation Coefficient and mean difference (SD) between the two measures were 0.852 and -2.56 (19.33) for lying; 0.836 and 2.60 (17.72) for sitting; and 0.782 and -0.065 (6.23) for moving. The mean difference between the two measures is small (⩽2.6%) for all three physical activity levels. On patient level, the variation between both measures is large with differences above and below the mean of ⩾20% being common. CONCLUSION: The overall level of agreement between the behavioural mapping method and an accelerometer to identify the physical activity levels 'lying', 'sitting' and 'moving' of hospitalized patients is reasonable.
DOCUMENT
Purpose: The primary aim of this study was to investigate the concurrent validity of the PAM AM400 accelerometer for measuring physical activity in usual care in hospitalized patients by comparing it with the ActiGraph wGT3X-BT accelerometer. Materials and methods: This was a prospective single centre observational study performed at the University Medical Centre Utrecht in The Netherlands. Patients admitted to different clinical wards were included. Intraclass Correlation Coefficients (ICCs) were computed using a two-way mixed model with random subjects. Additionally, Bland-Altman plots were made to visualize the level of agreement of the PAM with the ActiGraph. To test for proportional bias, a regression analysis was performed. Results: In total 17 patients from different clinical wards were included in the analyses. The level of agreement between the PAM and ActiGraph was found strong with an ICC of 0.955. The Bland-Altman analyses showed a mean difference of 1.12min between the two accelerometers and no proportional bias (p¼0.511). Conclusions: The PAM is a suitable movement sensor to validly measure the active minutes of hospitalized patients. Implementation of this device in daily care might be helpful to change the immobility culture in hospitals.
LINK
Introduction Physical activity levels of children with disabilities are low, as these children and their parents face a wide variety of both personal and environmental barriers. Behavior change techniques support pediatric physical therapists to address these barriers together with parents and children. We developed the What Moves You?! intervention Toolkit (WMY Toolkit) filled with behavioral change tools for use in pediatric physical therapy practice. Objective To evaluate the feasibility of using the WMY Toolkit in daily pediatric physical therapy practice. Methods We conducted a feasibility study with a qualitative approach using semi-structured interviews with pediatric physical therapists (n = 11). After one day of training, the pediatric physical therapists used the WMY Toolkit for a period of 9 weeks, when facilitating physical activity in children with disabilities. We analyzed the transcripts using an inductive thematic analysis followed by a deductive analysis using a feasibility framework. Results For acceptability, pediatric physical therapists found that the toolkit facilitated conversation about physical activity in a creative and playful manner. The working mechanisms identified were in line with the intended working mechanisms during development of the WMY Toolkit, such as focusing on problem solving, self-efficacy and independence. For demand, the pediatric physical therapists mentioned that they were able to use the WMY Toolkit in children with and without disabilities with a broad range of physical activity goals. For implementation, education is important as pediatric physical therapists expressed the need to have sufficient knowledge and to feel confident using the toolkit. For practicality, pediatric physical therapists were positive about the ease of which tools could be adapted for individual children. Some of the design and materials of the toolkit needed attention due to fragility and hygiene. Conclusion The WMY Toolkit is a promising and innovative way to integrate behavior change techniques into pediatric physical therapy practice.
LINK
This paper reports on the first stage of a research project1) that aims to incorporate objective measures of physical activity into health and lifestyle surveys. Physical activity is typically measured with questionnaires that are known to have measurement issues, and specifically, overestimate the amount of physical activity of the population. In a lab setting, 40 participants wore four different sensors on five different body parts, while performing various activities (sitting, standing, stepping with two intensities, bicycling with two intensities, walking stairs and jumping). During the first four activities, energy expenditure was measured by monitoring heart rate and the gas volume of in‐ and expired O2 and CO2. Participants subsequently wore two sensor systems (the ActivPAL on the thigh and the UKK on the waist) for a week. They also kept a diary keeping track of their physical activities, work and travel hours. Machine learning algorithms were trained with different methods to determine which sensor and which method was best able to differentiate the various activities and the intensity with which they were performed. It was found that the ActivPAL had the highest overall accuracy, possibly because the data generated on the upper tigh seems to be best distinguishing between different types of activities and therefore led to the highest accuracy. Accuracy could be slightly increased by including measures of heartrate. For recognizing intensity, three different measures were compared: allocation of MET values to activities (used by ActivPAL), median absolute deviation, and heart rate. It turns out that each method has merits and disadvantages, but median absolute deviation seems to be the most promishing metric. The search for the best method of gauging intensity is still ongoing. Subsequently, the algorithms developed for the lab data were used to determine physical activity in the week people wore the devices during their everyday activities. It quickly turned out that the models are far from ready to be used on free living data. Two approaches are suggested to remedy this: additional research with meticulously labelled free living data, e.g., by combining a Time Use Survey with accelerometer measurements. The second is to focus on better determining intensity of movement, e.g., with the help of unsupervised pattern recognition techniques. Accuracy was but one of the requirements for choosing a sensor system for subsequent research and ultimate implementation of sensor measurement in health surveys. Sensor position on the body, wearability, costs, usability, flexibility of analysis, response, and adherence to protocol equally determine the choice for a sensor. Also from these additional points of view, the activPAL is our sensor of choice.
DOCUMENT
Introduction: There is a lack of effective interventions available for Pediatric Physical Therapists (PPTs) to promote a physically active lifestyle in children with physical disabilities. Participatory design methods (co-design) may be helpful in generating insights and developing intervention prototypes for facilitating a physically active lifestyle in children with physical disabilities (6–12 years). Materials and methods: A multidisciplinary development team of designers, developers, and researchers engaged in a co-design process–together with parents, PPTs, and other relevant stakeholders (such as the Dutch Association of PPTs and care sports connectors). In this design process, the team developed prototypes for interventions during three co-creation sessions, four one-week design sprint, living-lab testing and two triangulation sessions. All available co-design data was structured and analyzed by three researchers independently resulting in themes for facilitating physical activity. Results: The data rendered two specific outcomes, (1) knowledge cards containing the insights collected during the co-design process, and (2) eleven intervention prototypes. Based on the generated insights, the following factors seem important when facilitating a physically active lifestyle: a) stimulating self-efficacy; b) stimulating autonomy; c) focusing on possibilities; d) focusing on the needs of the individual child; e) collaborating with stakeholders; f) connecting with a child's environment; and g) meaningful goal setting. Conclusion: This study shows how a co-design process can be successfully applied to generate insights and develop interventions in pediatric rehabilitation. The designed prototypes facilitate the incorporation of behavioral change techniques into pediatric rehabilitation and offer new opportunities to facilitate a physically active lifestyle in children with physical disabilities by PPTs. While promising, further studies should examine the feasibility and effectivity of these prototypes.
LINK
The (pre)school environment is an important setting to improve children’s health. Especially, the (pre)school playground provides a major opportunity to intervene. This review presents an overview of the existing evidence on the value of both school and preschool playgrounds on children’s health in terms of physical activity, cognitive and social outcomes. In addition, we aimed to identify which playground characteristics are the strongest correlates of beneficial effects and for which subgroups of children effects are most distinct. In total, 13 experimental and 17 observational studies have been summarized of which 10 (77%) and 16 (94%) demonstrated moderate to high methodological quality, respectively. Nearly all experimental studies (n = 11) evaluated intervention effects on time spent in different levels of physical activity during recess. Research on the effects of (pre)school playgrounds on cognitive and social outcomes is scarce (n = 2). The experimental studies generated moderate evidence for an effect of the provision of play equipment, inconclusive evidence for an effect of the use of playground markings, allocating play space and for multi-component interventions, and no evidence for an effect of decreasing playground density, the promotion of physical activity by staff and increasing recess duration on children’s health. In line with this, observational studies showed positive associations between play equipment and children’s physical activity level. In contrast to experimental studies, significant associations were also found between children’s physical activity and a decreased playground density and increased recess duration. To confirm the findings of this review, researchers are advised to conduct more experimental studies with a randomized controlled design and to incorporate the assessment of implementation strategies and process evaluations to reveal which intervention strategies and playground characteristics are most effective. https://doi.org/10.1186/1479-5868-11-59 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
MULTIFILE
Abstract Background: People with severe mental illness (SMI) often suffer from long-lasting symptoms that negatively influence their social functioning, their ability to live a meaningful life, and participation in society. Interventions aimed at increasing physical activity can improve social functioning, but people with SMI experience multiple barriers to becoming physically active. Besides, the implementation of physical activity interventions in day-to-day practice is difficult. In this study, we aim to evaluate the effectiveness and implementation of a physical activity intervention to improve social functioning, mental and physical health. Methods: In this pragmatic stepped wedge cluster randomized controlled trial we aim to include 100 people with SMI and their mental health workers from a supported housing organization. The intervention focuses on increasing physical activity by implementing group sports activities, active guidance meetings, and a serious game to set physical activity goals. We aim to decrease barriers to physical activity through active involvement of the mental health workers, lifestyle courses, and a medication review. Participating locations will be divided into four clusters and randomization will decide the start of the intervention. The primary outcome is social functioning. Secondary outcomes are quality of life, symptom severity, physical activity, cardiometabolic risk factors, cardiorespiratory fitness, and movement disturbances with specific attention to postural adjustment and movement sequencing in gait. In addition, we will assess the implementation by conducting semi-structured interviews with location managers and mental health workers and analyze them by direct content analysis. Discussion: This trial is innovative since it aims to improve social functioning in people with SMI through a physical activity intervention which aims to lower barriers to becoming physically active in a real-life setting. The strength of this trial is that we will also evaluate the implementation of the intervention. Limitations of this study are the risk of poor implementation of the intervention, and bias due to the inclusion of a medication review in the intervention that might impact outcomes. Trial registration: This trial was registered prospectively in The Netherlands Trial Register (NTR) as NTR NL9163 on December 20, 2020. As the The Netherlands Trial Register is no longer available, the trial can now be found in the International Clinical Trial Registry Platform via: https:// trial search. who. int/ Trial2. aspx? Trial ID= NL9163.
DOCUMENT
OBJECTIVE: 'Better By Moving' is a multifaceted intervention developed and implemented in collaboration with patients and healthcare professionals to improve physical activity in hospitalized adults. This study aimed to understand if, how and why 'Better By Moving' resulted in higher levels of physical activity by evaluating both outcomes and implementation process.DESIGN: Mixed-methods study informed by the Medical Research Council guidance.SETTING: Tertiary hospital.PARTICIPANTS: Adult patients admitted to surgery, haematology, infectious diseases and cardiology wards, and healthcare professionals.MEASURES: Physical activity was evaluated before and after implementation using the Physical Activity Monitor AM400 on one random day during hospital stay between 8 am and 8 pm. Furthermore, the time spent lying on bed, length of stay and discharge destination was investigated. The implementation process was evaluated using an audit trail, surveys and interviews.RESULTS: There was no significant difference observed in physical activity (median [IQR] 23 [12-51] vs 27 [17-55] minutes, P = 0.107) and secondary outcomes before-after implementation. The intervention components' reach was moderate and adoption was low among patients and healthcare professionals. Patients indicated they perceived more encouragement from the environment and performed exercises more frequently, and healthcare professionals signalled increased awareness and confidence among colleagues. Support (priority, resources and involvement) was perceived a key contextual factor influencing the implementation and outcomes.CONCLUSION: Although implementing 'Better By Moving' did not result in significant improvements in outcomes at our centre, the process evaluation yielded important insights that may improve the effectiveness of implementing multifaceted interventions aiming to improve physical activity during hospital stay.
DOCUMENT