The goal of this study was to develop an automated monitoring system for the detection of pigs’ bodies, heads and tails. The aim in the first part of the study was to recognize individual pigs (in lying and standing positions) in groups and their body parts (head/ears, and tail) by using machine learning algorithms (feature pyramid network). In the second part of the study, the goal was to improve the detection of tail posture (tail straight and curled) during activity (standing/moving around) by the use of neural network analysis (YOLOv4). Our dataset (n = 583 images, 7579 pig posture) was annotated in Labelbox from 2D video recordings of groups (n = 12–15) of weaned pigs. The model recognized each individual pig’s body with a precision of 96% related to threshold intersection over union (IoU), whilst the precision for tails was 77% and for heads this was 66%, thereby already achieving human-level precision. The precision of pig detection in groups was the highest, while head and tail detection precision were lower. As the first study was relatively time-consuming, in the second part of the study, we performed a YOLOv4 neural network analysis using 30 annotated images of our dataset for detecting straight and curled tails. With this model, we were able to recognize tail postures with a high level of precision (90%)
MULTIFILE
This research is commissioned by the professorship Novel Proteins: Insects and Fish, Healthy, Sustainable and Safe (INVIS) and conducted with the aim to investigate the constraints that hinder the uptake of insect-based feed in the Dutch finfish aquaculture branch and advise upon how to initiate a transition within the branch to adopt insect meal in fish feed widely. This is a underlying report of the webinar Insect culture in the Netherlands for feed and food on January 19, 2021.
DOCUMENT
Due to the environmental and nutritional benefits of insects, their consumption would be one of the solutions to feed the growing human population. Despite the increasing interest in the use of insects as food and feed, consumer acceptance is the major obstacle to successful implementation in Western countries and we studied the factors that influence consumer acceptance in a group of university students from Germany and the Netherlands. In this exploratory research, a survey was conducted (n = 222). Socio‐demographic and psychological factors were established from a theoretical review. In addition, we elaborated on questions regarding information on the health and environmental benefits of consuming insects. Initially, the data obtained are presented through descriptive statistics. The influence of the socio‐demographic and psychological factors, and the information on the willingness to accept insects as animal feed and human food was analyzed using correlations and multiple linear regressions. Results showed more willingness to accept insects as animal feed than in human food. The acceptance among German and Dutch students seems to be driven by issues similar to those in other European countries, such as visual aspects and knowledge about the benefits. The effect of the information on willingness constitutes an important finding of this study, especially for the use of insects in animal feed, since most of the previous studies have focused on the use of insects as human food. Our data support the need to inform and educate consumers about the environmental and health benefits of entomophagy. We conclude that effective efforts to implement entomophagy could increase the level of familiarity with the insect food and inform (or educate) consumers about its benefits. Insights from this study are useful to address studies focusing on specific segments of possible early adopters and consequently addressing communication strategies in this market segmentation.
DOCUMENT
Animal welfare is a multidimensional phenomenon and currently its on-farm assessment requires complex, multidimensional frameworks involving farm audits which are time-consuming, infrequent and expensive. The core principle of precision agriculture is to use sensor technologies to improve the efficiency of resource use by targeting resources to where they give a benefit. Precision livestock farming (PLF) enables farm animal management to move away from the group level to monitoring and managing individual animals. A range of precision livestock monitoring and control technologies have been developed, primarily to improve livestock production efficiency. Examples include using camera systems monitoring the movement of housed broiler chickens to detect problems with feeding systems or disease and leg-mounted accelerometers enabling the detection of the early stages of lameness in dairy cows. These systems are already improving farm animal welfare by, for example, improving the detection of health issues enabling more rapid treatment, or the detection of problems with feeding systems helping to reduce the risk of hunger. Environmental monitoring and control in buildings can improve animal comfort, and automatic milking systems facilitate animal choice and improve human-animal interactions. Although these precision livestock technologies monitor some parameters relevant to farm animal welfare (e.g. feeding, health), none of the systems yet provide the broad, multidimensional integration that is required to give a complete assessment of an animal’s welfare. However, data from PLF sensors could potentially be integrated into automated animal welfare assessment systems, although further research is needed to define and validate this approach.
DOCUMENT
Duurzaamheidsbalans: verschillende onderzoeksrapporten laten zien dat Europese grondstoffen voor eiwit in veevoer milieuvriendelijker zijn dan soja uit Zuid-Amerika. Het is daarom vanuit milieu-oogpunt wenselijk om meer regionaal geteeld eiwitrijk veevoer te gebruiken in Nederland.Ketenaanpak: De Raad meent dat voor het oplossen van de geïdentificeerde knelpunten een ketenaanpak essentieel is. Niet slechts één partij heeft de oplossing. Momenteel ontbreekt verbinding en kennis in de keten. Voor deze verbinding is het nodig dat alle betrokken partijen met elkaar open het gesprek aangaan en elkaar betrekken bij het oplossen van ieders knelpunten.Voornaamste knelpunten 1. HANDEL: Door afspraken zoals Blair House agreement en GATT is eiwit van buiten de EU goedkoop en is een achterstand opgelopen in kennis over en ervaring met Europese eiwitteelt. 2. TEELT: De teelt van eiwitgewassen is relatief onbekend bij Nederlandse boeren, rassen zijn verouderd of onvoldoende beschikbaar en het saldo is in veel gevallen nog te laag, waarbij positieve effecten onbekend of ondergewaardeerd zijn.3. VERWERKING en 4. SCHAAL: Regionaal eiwitrijk veevoer is onvoldoende beschikbaar, vooral omdat verwerkingsmogelijkheden nog beperkt zijn en de kleinere schaal extra kosten met zich mee brengt. Dit maakt tevens investeringen onaantrekkelijk.5. MARKT: Regionaal geteeld eiwit leidt als gevolg van een hogere kostprijs tot duurder veevoer. Het halen van een meerprijs bij de consument voor producten geproduceerd met regionaal veevoer lukt (nog) niet, mede omdat er onvoldoende bewustzijn is over de problematiek. Maatschappelijke organisaties, retail en de overheid spelen hierin een rol.
DOCUMENT
Inaugural lecture as Lector Precision Livestock Farming at HAS University of Applied Sciences on October 14, 2016. PLF, Precision Livestock Farming, uses technologies to continuously monitor animal behaviour, animal health, production and environmental impact.
DOCUMENT
Agricultural by-products, that is primary residue, industrial by-products and animal manure, are an important source of nutrients and carbon for maintaining soil quality and crop production but can also be valorised through treatment pathways such as fermentation, incineration or a combination of these called bio-refinery. Here, we provide an overview of opportunity to reduce environmental impact of valorising agricultural by-products. We estimate the available by-products in Northwestern Europe as a case study and the maximum and realistic greenhouse gas reduction potentials. Availability, collectability, the original use and environmental impact including land use changes, soil carbon sequestration and pollution swapping are discussed as critical factors when valorising agricultural by-products.
DOCUMENT
Even in a less eventful year, it’s no easy feat: working to make our food supply healthy and sustainable. But 2020 brought a spate of new challenges. It was the year of Brexit, Black Lives Matter, and the COVID-19 pandemic. A year of hope and loss and solidarity, of masks and worries and Zoom calls. Of infection sweeping through the meatpacking industry and sometimes, of empty supermarket shelves. It was also the year that brought us the glimmering realisation that everything could be different. When so much has changed – how we work, who we spend time with, how far we venture from home – what all might be possible for food and for farming? In Flevo Campus’s latest collection of essays, thirteen journalists, scholars, and thought leaders from the US, the Netherlands, and the UK share insight into the question: How can we build resilience into our food supply – and grow more resilient ourselves? Every year, Flevo Campus publishes the best work on feeding the cities of today and tomorrow. This year’s edition includes essays by Stephen Satterfield, Charles C. Mann, Herman Lelieveldt, Hester Dibbits, Kelly Streekstra, Sigrid Wertheim-Heck, Anke Brons, Joris Lohman, Sebastiaan Aalst, Marian Stuiver, Frank Verhoeven, Emily Whyman, and Lenno Munnikes.
DOCUMENT