INTRODUCTION: Sufficient high quality dietary protein intake is required to prevent or treat sarcopenia in elderly people. Therefore, the intake of specific protein sources as well as their timing of intake are important to improve dietary protein intake in elderly people.OBJECTIVES: to assess the consumption of protein sources as well as the distribution of protein sources over the day in community-dwelling, frail and institutionalized elderly people.METHODS: Habitual dietary intake was evaluated using 2- and 3-day food records collected from various studies involving 739 community-dwelling, 321 frail and 219 institutionalized elderly people.RESULTS: Daily protein intake averaged 71 ± 18 g/day in community-dwelling, 71 ± 20 g/day in frail and 58 ± 16 g/day in institutionalized elderly people and accounted for 16% ± 3%, 16% ± 3% and 17% ± 3% of their energy intake, respectively. Dietary protein intake ranged from 10 to 12 g at breakfast, 15 to 23 g at lunch and 24 to 31 g at dinner contributing together over 80% of daily protein intake. The majority of dietary protein consumed originated from animal sources (≥60%) with meat and dairy as dominant sources. Thus, 40% of the protein intake in community-dwelling, 37% in frail and 29% in institutionalized elderly originated from plant based protein sources with bread as the principle source. Plant based proteins contributed for >50% of protein intake at breakfast and between 34% and 37% at lunch, with bread as the main source. During dinner, >70% of the protein intake originated from animal protein, with meat as the dominant source.CONCLUSION: Daily protein intake in these older populations is mainly (>80%) provided by the three main meals, with most protein consumed during dinner. More than 60% of daily protein intake consumed is of animal origin, with plant based protein sources representing nearly 40% of total protein consumed. During dinner, >70% of the protein intake originated from animal protein, while during breakfast and lunch a large proportion of protein is derived from plant based protein sources.
DOCUMENT
COTOPAXI is an ANDEAN lupin which has obtained Plant Breeder Rights by Vandinter Semo BV, the Netherlands. COTOPAXI is rich in protein (45%) and oils (20%). COTOPAXI will positively contribute to the plant-based protein transition in hte Netherlands and Europe.
MULTIFILE
Rationale: The goal of the PROVE (Protein enriched vegan products to fight malnutrition) project is to innovate the assortment of plant-based energy and protein enriched products for dietary treatment of (risk of) malnutrition. We aimed to explore preferences of dietitians for plant-based products in the treatment of malnutrition.Methods: In this design-based research project, the Double Diamond model was applied. Contextual interviews were performed with 9 dietitians experienced in treating clients using a vegan diet (1 omnivore, 3 flexi-vegetarian, 1 vegetarian, 1 pescetarian, 3 flexi-vegan). Interviews focused on preferences regarding product type, size, nutrients, taste, packaging, price. Affinity mapping was used to code and analyze the transcripted interviews. The results were summarized into concept products.Results: Four product concepts were developed that represent preferences of dietitians for a plant-based energy and protein enriched product for clients with (risk of) malnutrition. Overall, pea or soy were preferred as a protein source and addition of vitamins and minerals was not preferred.Conclusion: Preferences of dietitians for plant-based protein and energy rich products for patients with risk of malnutrition largely vary. Within PROVE, we will enrich these results with patient perspectives, as basis to develop and deliver plant-based energy and protein enriched products for treatment of (risk of) malnutrition.
DOCUMENT
Plant-based proteins, like water lentils, generally result in lower environmental impact compared to animal-based protein.
DOCUMENT
Increasing awareness of the impact of frailty on elderly people resulted in research focusing on factors that contribute to the development and persistence of frailty including nutrition and physical activity. Most effort so far has been spent on understanding the association between protein intake and the physical domain of frailty. Far less is known for other domains of frailty: Cognition, mood, social health and comorbidity. Therefore, in the present narrative review, we elaborate on the evidence currently known on the association between protein and exercise as well as the broader concept of frailty. Most, but not all, identified studies concluded that low protein intake is associated with a higher prevalence and incidence of physical frailty. Far less is known on the broader concept of frailty. The few studies that do look into this association find a clear beneficial effect of physical activity but no conclusions regarding protein intake can be made yet. Similar, for other important aspects of frailty including mood, cognition, and comorbidity, the number of studies are limited and results are inconclusive. Future studies need to focus on the relation between dietary protein and the broader concept of frailty and should also consider the protein source, amount and timing.
DOCUMENT
Digitally supported dietary counselling may be helpful in increasing the protein intake in combined exercise and nutritional interventions in community-dwelling older adults. To study the effect of this approach, 212 older adults (72.2 ± 6.3 years) were randomised in three groups: control, exercise, or exercise plus dietary counselling. The dietary counselling during the 6-month intervention was a blended approach of face-to-face contacts and videoconferencing, and it was discontinued for a 6-month follow-up. Dietary protein intake, sources, product groups, resulting amino acid intake, and intake per eating occasion were assessed by a 3-day dietary record. The dietary counselling group was able to increase the protein intake by 32% at 6 months, and the intake remained 16% increased at 12 months. Protein intake mainly consisted of animal protein sources: dairy products, followed by fish and meat. This resulted in significantly more intake of essential amino acids, including leucine. The protein intake was distributed evenly over the day, resulting in more meals that reached the protein and leucine targets. Digitally supported dietary counselling was effective in increasing protein intake both per meal and per day in a lifestyle intervention in community-dwelling older adults. This was predominantly achieved by consuming more animal protein sources, particularly dairy products, and especially during breakfast and lunch.
MULTIFILE
Background: A protein intake of 30‐40 g per meal is suggested to maximally stimulate muscle protein synthesis in older adults and could therefore contribute to the prevention of sarcopenia. Protein intake at breakfast and lunch is often low and offers a great opportunity to improve daily protein intake. Protein, however, is known for its satiating effects. Therefore, we explored the association between the amount of protein intake at breakfast and lunch and total daily protein intake in older adults.Methods: Protein intake was assessed by a 3‐day food record in 498 community dwelling older adults (≥55 years) participating different lifestyle interventions. Linear mixed model analysis was used to examine the association between protein intake at breakfast or lunch and total daily protein intake, adjusted for sex, age, body mass index, smoking status, study and total energy intake.Results: After adjustment for potential confounders, a 10 g higher protein intake at breakfast was associated with a 3.2 g higher total daily protein intake (P = 0.008) for males and a 4.9 g (P < 0.001) higher total daily protein intake for females. A 10 g higher protein intake at lunch was associated with a 3.7 g higher total daily protein intake (P < 0.001) for males, and a 5.8 g higher total daily protein intake (P < 0.001) for females.Conclusions: A higher protein intake at breakfast and lunch is associated with a higher total daily protein intake in community dwelling older adults. Stimulating a higher protein intake at breakfast and lunch might represent a promising nutritional strategy to optimise the amount of protein per meal without compromising total daily protein intake.
DOCUMENT
Plant-based proteins, like water lentils, generally result in lower environmental impact compared to animal-based protein.
DOCUMENT
Due to a growing challenge to feed the world’s population and an increased awareness to minimize the impact of our food choices on climate change, a more plant-based diet has gained popularity with a growing number of plant-based products on the market. To stimulate a plant-based diet that also improves long-term health, data are needed to monitor whether these products are healthy alternatives to animal-based foods. Therefore, this study inventoried 916 plant-based meat, fish, and dairy alternatives from eight Dutch supermarkets. The nutritional quality of each product was assessed by (1) the Dutch food-based dietary guidelines and (2) the Nutri-Score. The results show that over 70% of meat, fish, and dairy alternatives have an A/B Nutri-Score (indicating high nutritional quality), but do not comply with the Dutch dietary guidelines. This is mainly due to high salt and low vitamin B12 and iron content (meat and fish alternatives) or low protein and calcium levels (dairy alternatives). In conclusion, the majority of plant-based products are nutritionally not full alternatives of the animal-based equivalents; however, there are still opportunities for reformulation. To aid the consumer in making healthy plant-based food choices, a better alignment between the Nutri-Score and the recommended dietary guidelines is needed.
DOCUMENT
Background: A higher protein intake is suggested to preserve muscle mass during aging and may therefore reduce the risk of sarcopenia.Objectives: We explored whether the amount and type (animal or vegetable) of protein intake were associated with 5-y change in mid-thigh muscle cross-sectional area (CSA) in older adults (n = 1561).Methods: Protein intake was assessed at year 2 by a Block foodfrequency questionnaire in participants (aged 70–79 y) of the Health, Aging, and Body Composition (Health ABC) Study, a prospective cohort study. At year 1 and year 6 mid-thigh muscle CSA in square centimeters was measured by computed tomography. Multiple linearregression analysis was used to examine the association between energy-adjusted protein residuals in grams per day (total, animal, and vegetable protein) and muscle CSA at year 6, adjusted for muscle CSA at year 1 and potential confounders including prevalent health conditions, physical activity, and 5-y change in fat mass.Results: Mean (95% CI) protein intake was 0.90 (0.88, 0.92) g ·kg–1 · d–1 and mean (95% CI) 5-y change in muscle CSA was −9.8 (−10.6, −8.9) cm2. No association was observed between energyadjusted total (β = −0.00; 95% CI: −0.06, 0.06 cm2; P = 0.982), animal (β = −0.00; 95% CI: −0.06, 0.05 cm2; P = 0.923), or plant(β = +0.07; 95% CI: −0.06, 0.21 cm2; P = 0.276) protein intake and muscle CSA at year 6, adjusted for baseline mid-thigh muscle CSA and potential confounders.Conclusions: This study suggests that a higher total, animal, or vegetable protein intake is not associated with 5-y change in midthigh muscle CSA in older adults. This conclusion contradicts some, but not all, previous research. This trial was registered at www.trialregister.nl as NTR6930.
DOCUMENT