Plasma treatment is a commonly used technology to modify the wetting behavior of polymer films in the production process for, e.g., printed electronics. As the effect of the plasma treatment decreases in time, the so-called "aging effect", it is important to gain knowledge on how this effect impacts the wetting behavior of commonly used polymers in order to be able to optimize production processing times. In this article the authors study the wetting behavior of polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), fluorinated ethylene propylene (FEP) and polyimide (PI) polymer films after plasma treatment in time. The plasma treatment was performed using a novel maskless DBD plasma patterning technology, i.e., Plasma Printing, at atmospheric pressure under nitrogen atmosphere. After treatment, the samples were stored at room temperature at 30%-40% relative humidity for up to one month. An increase in wettability is measured for all polymers directly after Plasma Printing. The major increase in wettability occurs after a small number of treatments, e.g., low energy density. More treatments show no further beneficial gain in wettability. The increase in wettability is mainly due to an increase in the polar part of the surface energy, which can probably be attributed to chemical modification of the surface of the investigated polymers. With the exception of FEP, during storage of the plasma treated polymers, the wettability partially declines in the first five days, after which it stabilizes to approximately 50% of its original state. The wettability of FEP shows little decline during storage. As the storage time between production steps is mostly under two days, Plasma Printing shows good promise as a pre-treatment step in the production of printed electronics. d c 2013 Society for Imaging Science and Technology.
LINK
The working hypothesis for this research project is that it is possible to develop a new functional polymer printing process for the direct application of conductive polymer onto textiles. We will use the basic extrusion technology that is currently applied in 3D printing. Thus the aim is also expanding the knowledge and knowhow base of 3D printing and make this technology applicable for deposition of functional polymers on textiles in such a way that process parameters are clearly understood, and pre-defined final product specifications can be met. Thus the challenge is to apply conductive tracks with a simple one step process that fits the current textile production processes. This means that investigating polymer deposition onto textiles of bio based polymers like PLA, doped with carbon could be a versatile route to achieving economic and sustainable conducting textiles. If the mechanism underlying the bonding of doped PLA with textiles can be controlled for processing then a new route to achieving conductive grids would be opened.Paper written by the Saxion chair Smart Functional Materials and The Unversity of Twente for and accepted by the Autex Conference 2013 (22-24 May 2013, Dresden, Germany).
MULTIFILE
In manufacturing of organic electronics, inkjet printing as an alternative technique for depositing materials is becoming increasingly important. Aside to the ink formulations challenges, improving the resolution of the printed patterns is a major goal. In this study we will discuss a newly developed technique to selectively modify the substrate surface energy using plasma treatment as a means to achieve this goal. First, we look at the effects of the μPlasma treatment on the surface energy for a selection of plastic films. Second, we investigated the effects of the μPlasma treatment on the wetting behaviour of inkjet printed droplets to determine the resolution of the μPlasma printing technique. We found that the surface energy for all tested films increased significantly reaching a maximum after 3-5 repetitions. Subsequently the surface energy decreased in the following 8-10 days after treatment, finally stabilizing at a surface energy roughly halfway between the surface energy of the untreated film and the maximum obtained surface energy. When μPlasma printing lines, an improved wetting abillity of inkjet printed materials on the plasma treated areas was found. The minimal achieved μPlasma printed line was found to be 1 mm wide. For future application it is important to increase the resolution of the plasma print process. This is crucial for combining plasma treatment with inkjet print technology as a means to obtain higher print resolutions.
DOCUMENT
This project is part of an interdisciplinary and international collaboration bringing together experts in nanomaterials, sensor technology, and engineering from the University of Technology of Troyes (UTT, France), Eindhoven University of Technology (TU/e, The Netherlands) and Hanze University of Applied Sciences (HUAS, The Netherlands). It presents an innovative, integrated approach including design, fabrication, characterization, and integration of flexible sensors dedicated to wind turbine blade monitoring, aiming to advance smart monitoring and renewable energy research. The sensor will be developed using functional polymer films decorated with conductive nanoparticles. A novel manufacturing approach will be applied, combining additive manufacturing techniques with the colloidal deposition of silver or gold nanoparticles.
In vele industrieën zoals in de scheepsbouw, luchtvaart en infrastructuur worden metaalsoorten veelvuldig toegepast omdat het een sterk en gemakkelijk te verwerken materiaal is. Nadelig is dat het materiaal bij buitentoepassing corrodeert. Daarom wordt er veelal gebruik maakt van een oppervlaktebehandeling zoals een verfsysteem of coating. Traditionele coatings bevatten vaak schadelijke stoffen zoals conserveringsstoffen, chromaat-zouten of Chroom-6 om infecties en oxidatieprocessen te verminderen en de levensduur van het materiaal te verlengen. Daarnaast zijn veel coatings op aardolie gebaseerd en kunnen microplastics door verwering vrijkomen. Milieuvriendelijke en duurzamere beschermingssystemen zouden een mijlpaal zijn in de metaalindustrie. De schimmel Aureobasidium pullulans wordt in combinatie met lijnzaadolie inmiddels al succesvol toegepast voor het beschermen van hout en kan door zijn aanmaak van pullulaan of andere extracellulaire polymere stoffen (EPS) mogelijk een grote rol spelen in de zoektocht naar milieuvriendelijke en duurzame beschermingssystemen voor metaal. In onderzoek is aangetoond dat de extracellulaire polymere stof pullulaan in staat is om corrosie op metaal sterk te verminderen. Het nadeel is echter dat pullulaan wateroplosbaar is. Het doel van dit missie-gedreven onderzoek is om een fermentatieproces te ontwikkelen waarbij geschikte en watervaste biopolymeren voor de bescherming van metaal worden geproduceerd door de schimmel A. pullulans. Door een nieuw fermentatieproces kan de productie van deze EPS gestimuleerd worden. Met een beschermingssysteem van A. pullulans, EPS en lijnzaadolie kunnen de corroderende factoren als vocht en zuurstof worden verminderd. Daarnaast kan de productie van melanine door A. pullulans een rol spelen in de bescherming tegen UV-licht waardoor gepolymeriseerd lijnzaadolie langer stabiel blijft. Deze onderdelen zullen een dergelijke oppervlaktebehandeling voor metaal geschikt maken voor buiten toepassing en geven meer toegevoegde waarde aan het product.