''This research aims to address a post-earthquake urgent strengthening measure to enhance the residual seismic capacity of earthquake-damaged reinforced concrete wall structures with coupling beams. The study consists of a series of tests on half-scale prototype coupling beams with various detailing options, including confined with reduced confinement, partially confined, and unconfined bundles, under cyclic loading conditions. The methodology employed involved subjecting the specimens to displacement-controlled reversal tests, and carefully monitoring their response using strain gauges and potentiometers. The main results obtained reveal that GFRP wrapping significantly enhances the seismic performance of earthquake-damaged coupling beams, even in cases where specimens experienced strength loss and main reinforcement rupture. The strengthened beams exhibit commendable ductility, maintaining high levels of deformation capacity, and satisfying the requirements of relevant seismic design codes. The significance of the study lies in providing valuable insights into the behavior and performance of damaged coupling beams and assessing the effectiveness of GFRP wrapping as a rapid and practical post-earthquake strengthening technique. The findings can be particularly useful for developing urgent post-earthquake strengthening strategies for high-rise buildings with structural walls. The method may be particularly useful for mitigating potential further damage in aftershocks and eventual collapse. In conclusion, this study represents a significant advancement in understanding the post-earthquake behaviors of coupling beams and provides valuable guidance for practitioners in making informed decisions regarding post-earthquake strengthening projects. The findings contribute to the overall safety and resilience of structures in earthquake-prone regions.''
DOCUMENT
Kahramanmaraş Earthquake Sequence of 6th of February is the deadliest earthquake that happened in Turkey in the era of instrumental seismology, claiming more than 55 thousand lives and leaving torn down cities and towns behind. More than 450 km long lateral strike-slip fault ruptured during these catastrophic earthquakes. As a result, more than 38 thousand buildings collapsed causing life losses. Considering that the large share of the Turkish building stock consists of RC buildings, the vulnerable RC building stock is the main responsible for this picture. Deficiencies of the Turkish RC building stock are well known since they manifested themselves several times in the past earthquakes. However, considering the improvements in the seismic codes and the seismic hazard maps achieved in the last two decades, the widespread collapse of buildings constructed after year 2000 was rather unexpected. Some of the observed structural damage patterns are similar to those observed also in the pre-2000 buildings in recent earthquakes, however, some other types of damages, such as out-of-plane bending and shear failures or shear-friction capacity failure of RC walls, brittle fracture and bond-slip failure of reinforcement, tension failure of beams and slabs are usually not witnessed. This paper presents a carefully selected set of examples comparing the pre-2000 and post-2000 building damages and collapses, also referring to a detailed summary and comparison of the code developments in Turkey.
DOCUMENT
A damage estimation exercise has been carried out using the building stock inventory and population database of the Istanbul Metropolitan Municipality and selected European earthquake loss estimation packages: KOERILOSS, SELENA, ESCENARIS, SIGE, and DBELA. The input ground-motions, common to all models, correspond to a “credible worst case scenario” involving the rupture of the four segments of the Main Marmara Fault closest to Istanbul in a Mw 7.5 earthquake. The aim of the exercise is to assess the applicability of the selected software packages to earthquake loss estimation in the context of rapid post-earthquake response in European urban centers. The results in terms of predicted building damage and social losses are critically compared amongst each other, as well as with the results of previous scenario-based earthquake loss assessments carried out for the study area. The key methodological aspects and data needs for European rapid post-earthquake loss estimation are thus identified.
LINK
Why are risk decisions sometimes rather irrational and biased than rational and effective? Can we educate and train vocational students and professionals in safety and security management to let them make smarter risk decisions? This paper starts with a theoretical and practical analysis. From research literature and theory we develop a two-phase process model of biased risk decision making, focussing on two critical professional competences: risk intelligence and risk skill. Risk intelligence applies to risk analysis on a mainly cognitive level, whereas risk skill covers the application of risk intelligence in the ultimate phase of risk decision making: whether or not a professional risk manager decides to intervene, how and how well. According to both phases of risk analysis and risk decision making the main problems are described and illustrated with examples from safety and security practice. It seems to be all about systematically biased reckoning and reasoning.
DOCUMENT
A major challenge for disaster scholars and policymakers is to understand the power dimension in response networks, particularly relating to collaboration and coordination. We propose a conceptual framework to study interests and negotiations in and between various civic and professional, response networks drawing on the concepts of “programming” and “switching” proposed by Manuel Castells in his work on the network society. Programming in disaster response refers to the ability to constitute response networks and to program/reprogram them in terms of the goals assigned to the network. Switching is the ability to connect different net-works by sharing common goals and combining resources. We employ these concepts to understand how the US Federal Emergency Management Agency organized its response in the aftermath of Hurricanes Katrina and Sandy. Our conceptual framework can be used both by disaster scholars and policymakers to understand how networked power is constructed and utilized.
DOCUMENT
In recent years, drones have increasingly supported First Responders (FRs) in monitoring incidents and providing additional information. However, analysing drone footage is time-intensive and cognitively demanding. In this research, we investigate the use of AI models for the detection of humans in drone footage to aid FRs in tasks such as locating victims. Detecting small-scale objects, particularly humans from high altitudes, poses a challenge for AI systems. We present first steps of introducing and evaluating a series of YOLOv8 Convolutional Neural Networks (CNNs) for human detection from drone images. The models are fine-tuned on a created drone image dataset of the Dutch Fire Services and were able to achieve a 53.1% F1-Score, identifying 439 out of 825 humans in the test dataset. These preliminary findings, validated by an incident commander, highlight the promising utility of these models. Ongoing efforts aim to further refine the models and explore additional technologies.
MULTIFILE
Post-earthquake structural damage shows that out-of-plane wall collapse is one of the most prevalent failure mechanisms in unreinforced masonry (URM) buildings. This issue is particularly critical in Groningen, a province located in the northern part of the Netherlands, where low-intensity ground shaking has occurred since 1991 due to gas extraction. The majority of buildings in this area are constructed using URM and were not designed to withstand earthquakes, as the area had never been affected by tectonic seismic activity before. Hence, the assessment of URM buildings in the Groningen province has become of high relevance.Out-of-plane failure mechanisms in brick masonry structures often stem from poor wall-to-wall, wall-to-floor or wall-to-roof connections that provide insufficient restraint and boundary conditions. Therefore, studying the mechanical behaviour of such connections is of prime importance for understanding and preventing damages and collapses in URM structures. Specifically, buildings with double-leaf cavity walls constitute a large portion of the building stock in the Groningen area. The connections of the leaves in cavity walls, which consist of metallic ties, are expected to play an important role. Regarding the wall-to-floor connections, the traditional way for URM structures in Dutch construction practice is either a simple masonry pocket connection or a hook anchor as-built connection, which are expected to be vulnerable to out-of-plane excitation. However, until now, little research has been carried out to characterise the seismic behaviour of connections between structural elements in traditional Dutch construction practice.This thesis investigates the seismic behaviour of two types of connections: wall-to-wall connections between cavity wall leaves and wall-to-floor connections between the masonry cavity wall and timber diaphragm, commonly found in traditional houses in the Groningen area. The research is divided into three phases: (1) inventory of existing buildings and connections in the Groningen area, (2) performance of experimental tests, and (3) proposal and validation of numerical and mechanical models. The thesis explores the three phases as follows:(i) An inventory of connections within URM buildings in the Groningen area is established. The inventory includes URM buildings of Groningen based on construction material, lateral load-resisting system, floor system, number of storeys, and connection details. Specific focus is given to the wall-to-wall and wall-to-floor connections in each URM building. The thickness of cavity wall leaves, the air gap between the leaves and the size and spacing of timber joists are key aspects of the inventory.(ii) Experimental tests are performed on the most common connection typologies identified in the inventory. This phase consists of two distinct experimental campaigns:o The first experimental campaign took place at the laboratory of the Delft University of Technology to provide a comprehensive characterisation of the axial behaviour of traditional metal tie connections in cavity walls. The campaign included a wide range of variations, such as two embedment lengths, four pre-compression levels, two different tie geometries, and five different testing protocols, including both monotonic and cyclic loading. The experimental results showed that the capacity of the wall tie connection is strongly influenced by the embedment length and the tie geometry, whereas the applied pre-compression and the loading rate do not have a significant influence.o The second experimental campaign has been carried out at the laboratory of the Hanze University of Applied Sciences to characterise the seismic behaviour of timber joist-masonry cavity wall connections, reproducing both as-built and strengthened conditions. Twenty-two unreinforced masonry wallets were tested, with different configurations, including two tie distributions, two pre-compression levels, two different as-built connections, and two different strengthening solutions. The experimental results highlighted the importance of cohesion and friction between joist and masonry since the type of failure mechanism (sliding of the joist or rocking failure of the masonry wallet) depends on the value of these two parameters. Additionally, the interaction between the joist and the wallet and the uplift of the latter activated due to rocking led to an arching effect that increased friction at the interface between the joist and the masonry. Consequently, the arching effect enhanced the force capacity of the connection.(iii) Mechanical and numerical models are proposed and validated against the performed experiments or other benchmarks. Mechanical and numerical models for the cavity wall tie and mechanical models for the timber joist-masonry connections were developed and verified by the experimental results to predict the failure mode and the strength capacity of the examined connections in URM buildings.o The mechanical model for the cavity wall tie connections considers six possible failures, namely tie failure, cone break-out failure, pull-out failure, buckling failure, piercing failure and punching failure. The mechanical model is able to capture the mean peak force and the failure mode obtained from the tests. After being calibrated against the available experiments, the proposed mechanical model is used to predict the performance of untested configurations by means of parametric analyses, including higher strength of mortar for calcium silicate brick masonry, different cavity depth, different tie embedment depth, and the use of solid bricks in place of perforated clay bricks.o The results of the experimental campaign on cavity wall ties were also utilised to calibrate a hysteretic numerical model representing the cyclic axial response of cavity wall tie connections. The proposed model uses zero-length elements implemented in OpenSees with the Pinching4 constitutive model to account for the compression-tension cyclic behaviour of the ties. The numerical model is able to capture important aspects of the tie response, such as strength degradation, unloading stiffness degradation, and pinching behaviour. The mechanical and numerical modelling approach can be easily adopted by practitioner engineers seeking to model the wall ties more accurately when assessing URM structures against earthquakes.o The mechanical model of timber-masonry connections examines two different failure modes: joist-sliding failure mode, including joist-to-wall interaction and rocking failure mode due to joist movement. Both mechanical models have been validated against the outcomes of the experimental campaigns conducted on the corresponding connections. The mechanical model is able to estimate each contribution of the studied mechanism. Structural engineers can use the mechanical model to predict the capacity of the connection for the studied failure modes.This research study can contribute to a better understanding of typical Groningen houses in terms of identifying the most common connections used at wall-to-wall and wall-to-floor connections in cavity walls, characterising the identified connections and proposing mechanical models for the studied connections.
DOCUMENT
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection.
There is mounting evidence that efforts to mitigate the adverse effects of human activity on climate and biodiversity have so far been unsuccessful. Explanations for this failure point to a number of factors discussed in this article. While acknowledging cognitive dissonance as a significant contributing factor to continuing unsustainable practices, this article seeks to explore hegemonic rationality of industrial expansion and economic growth and resulting politics of denial. These politics promote the economic rationale for exploitation of the environment, with pursuit of material wealth seen as the most rational goal. Framed this way, this rationality is presented by political and corporate decision-makers as common sense and continuous environmentally destructive behavior is justified under the guise of consumer choices, hampering meaningful action for sustainable change. This article underlines forms of alternative rationality, namely, non-utilitarian and non-hierarchical worldview of environmental and human flourishing, that can advance sustainability. LinkedIn: https://www.linkedin.com/in/helenkopnina/
DOCUMENT