''This research aims to address a post-earthquake urgent strengthening measure to enhance the residual seismic capacity of earthquake-damaged reinforced concrete wall structures with coupling beams. The study consists of a series of tests on half-scale prototype coupling beams with various detailing options, including confined with reduced confinement, partially confined, and unconfined bundles, under cyclic loading conditions. The methodology employed involved subjecting the specimens to displacement-controlled reversal tests, and carefully monitoring their response using strain gauges and potentiometers. The main results obtained reveal that GFRP wrapping significantly enhances the seismic performance of earthquake-damaged coupling beams, even in cases where specimens experienced strength loss and main reinforcement rupture. The strengthened beams exhibit commendable ductility, maintaining high levels of deformation capacity, and satisfying the requirements of relevant seismic design codes. The significance of the study lies in providing valuable insights into the behavior and performance of damaged coupling beams and assessing the effectiveness of GFRP wrapping as a rapid and practical post-earthquake strengthening technique. The findings can be particularly useful for developing urgent post-earthquake strengthening strategies for high-rise buildings with structural walls. The method may be particularly useful for mitigating potential further damage in aftershocks and eventual collapse. In conclusion, this study represents a significant advancement in understanding the post-earthquake behaviors of coupling beams and provides valuable guidance for practitioners in making informed decisions regarding post-earthquake strengthening projects. The findings contribute to the overall safety and resilience of structures in earthquake-prone regions.''
DOCUMENT
Kahramanmaraş Earthquake Sequence of 6th of February is the deadliest earthquake that happened in Turkey in the era of instrumental seismology, claiming more than 55 thousand lives and leaving torn down cities and towns behind. More than 450 km long lateral strike-slip fault ruptured during these catastrophic earthquakes. As a result, more than 38 thousand buildings collapsed causing life losses. Considering that the large share of the Turkish building stock consists of RC buildings, the vulnerable RC building stock is the main responsible for this picture. Deficiencies of the Turkish RC building stock are well known since they manifested themselves several times in the past earthquakes. However, considering the improvements in the seismic codes and the seismic hazard maps achieved in the last two decades, the widespread collapse of buildings constructed after year 2000 was rather unexpected. Some of the observed structural damage patterns are similar to those observed also in the pre-2000 buildings in recent earthquakes, however, some other types of damages, such as out-of-plane bending and shear failures or shear-friction capacity failure of RC walls, brittle fracture and bond-slip failure of reinforcement, tension failure of beams and slabs are usually not witnessed. This paper presents a carefully selected set of examples comparing the pre-2000 and post-2000 building damages and collapses, also referring to a detailed summary and comparison of the code developments in Turkey.
DOCUMENT
A damage estimation exercise has been carried out using the building stock inventory and population database of the Istanbul Metropolitan Municipality and selected European earthquake loss estimation packages: KOERILOSS, SELENA, ESCENARIS, SIGE, and DBELA. The input ground-motions, common to all models, correspond to a “credible worst case scenario” involving the rupture of the four segments of the Main Marmara Fault closest to Istanbul in a Mw 7.5 earthquake. The aim of the exercise is to assess the applicability of the selected software packages to earthquake loss estimation in the context of rapid post-earthquake response in European urban centers. The results in terms of predicted building damage and social losses are critically compared amongst each other, as well as with the results of previous scenario-based earthquake loss assessments carried out for the study area. The key methodological aspects and data needs for European rapid post-earthquake loss estimation are thus identified.
LINK
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection. The validated product of the experiment will be tested on the monument of Fraeylemaborg.
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection.