Microbacterium aurum strain B8.A was isolated from the sludge of a potato starch-processing factory on the basis of its ability to use granular starch as carbon- and energy source. Extracellular enzymes hydrolyzing granular starch were detected in the growth medium of M. aurum B8.A, while the type strain M. aurum DSMZ 8600 produced very little amylase activity, and hence was unable to degrade granular starch. The strain B8.A extracellular enzyme fraction degraded wheat, tapioca and potato starch at 37 °C, well below the gelatinization temperature of these starches. Starch granules of potato were hydrolyzed more slowly than of wheat and tapioca, probably due to structural differences and/or surface area effects. Partial hydrolysis of starch granules by extracellular enzymes of strain B8.A resulted in large holes of irregular sizes in case of wheat and tapioca and many smaller pores of relatively homogeneous size in case of potato. The strain B8.A extracellular amylolytic system produced mainly maltotriose and maltose from both granular and soluble starch substrates; also, larger maltooligosaccharides were formed after growth of strain B8.A in rich medium. Zymogram analysis confirmed that a different set of amylolytic enzymes was present depending on the growth conditions of M. aurum B8.A. Some of these enzymes could be partly purified by binding to starch granules.
DOCUMENT
Native potato starch is an excellent carrier of minerals due to its inherent ion exchange capacity. Mineral enrichment not only changes the nutritional value but also influences starch pasting and swelling properties. Hydrothermal treatments like annealing constitute a straightforward and green way to tune functional properties. Here, novel combinations of mineral enrichment and annealing were studied. Ion exchange was readily achieved by suspending starch in a salt solution at room temperature over 3 h and confirmed by ICP-OES. Annealing at 50 °C for 24 h using demineralized water or salt solutions strongly affected pasting, thermal, and swelling properties. The obtained XRD and DSC results support a more ordered structure with relative crystallinity increasing from initially 41.7% to 44.4% and gelatinization onset temperature increasing from 60.39 to 65.94 J/g. Solid-state NMR spectroscopy revealed no detectable changes after annealing. Total digestible starch content decreased after annealing from 8.89 to 7.86 g/100 g. During both ion exchange at room temperature and annealing, monovalent cations promoted swelling and peak viscosity, and divalent cations suppressed peak viscosity through ionic crosslinking. The presented combination allows fine-tuning of pasting behavior, potentially enabling requirements of respective food applications to be met while offering an alternative to chemically modified starches.
DOCUMENT
Modified starches are used widely in the food industry but often have a low nutritional value, lacking minerals vital for the human body, such as magnesium. Magnesium addition to native starches has been shown to result in changes in pasting properties. However, little work has been done on the addition of magnesium and other divalent cations to highly oxidised starches. In this work, we used dibasic magnesium hypochlorite (DMH) to oxidise potato starch to an industrially relevant degree of oxidation while at the same time introducing magnesium into the starch structure. We found that magnesium incorporation changes the pasting properties of starch and increases the gelatinisation temperature significantly, possibly due to an ionic cross-linking effect. These properties resemble the properties found for heat-moisture-treated potato starches. This change in properties was found to be reversible by performing a straightforward exchange of metal cations, either from sodium to magnesium or from magnesium to sodium. We show in this work the potential of the addition of divalent cations to highly oxidised starches in modifying the rheological and pasting properties of these starches and at the same time adding possible health benefits to modified starches by introducing magnesium.
DOCUMENT