This textbook is intended for a basic course in problem solving and program design needed by scientists and engineers using the TI-92. The TI-92 is an extremely powerful problem solving tool that can help you manage complicated problems quickly. We assume no prior knowledge of computers or programming, and for most of its material, high school algebra is sufficient mathematica background. It is advised that you have basic skills in using the TI-92. After the course you will become familiar with many of the programming commands and functions of the TI-92. The connection between good problem solving skills and an effective program design method, is used and applied consistently to most examples and problems in the text. We also introduce many of the programming commands and functions of the TI-92 needed to solve these problems. Each chapter ends with a number of practica problems that require analysis of programs as well as short programming exercises.
DOCUMENT
Design education has a nuanced relationship with examples. Although they are considered useful teaching tools, their use is often restricted to illustrating the design theories and principles around which the curriculum is structured. In contrast, professional designers view examples as autonomous entities and use them to initiate a critical dialogue with their current problem space. Therefore, students should be facilitated in cultivating their own repertoire of solutions and learn to initiate conversations between existing solutions and design challenges to gain a better understanding of the problem space and generate new designs. This paper outlines a small-scale experiment conducted with master's students in Applied Data Science at Utrecht University who took a course on designing recommender system interfaces. The students were provided with a set of examples of recommender interface designs as their main instructional tool. They could use this set to curate their own solution repertoire. As a result, the majority of the participants' work displayed more diverse designs, and they used design patterns distilled from those examples generatively, developing innovative designs. Based on this case study, we tentatively conclude that a design curriculum built around examples, complemented by theories, could be advantageous, as long as special attention is given to helping students initiate fruitful iterations between their challenges and a set of solutions.
LINK
ion of verb agreement by hearing learners of a sign language. During a 2-year period, 14 novel learners of Sign Language of the Netherlands (NGT) with a spoken language background performed an elicitation task 15 times. Seven deaf native signers and NGT teachers performed the same task to serve as a benchmark group. The results obtained show that for some learners, the verb agreement system of NGT was difficult to master, despite numerous examples in the input. As compared to the benchmark group, learners tended to omit agreement markers on verbs that could be modified, did not always correctly use established locations associated with discourse referents, and made characteristic errors with respect to properties that are important in the expression of agreement (movement and orientation). The outcomes of the study are of value to practitioners in the field, as they are informative with regard to the nature of the learning process during the first stages of learning a sign language.
DOCUMENT
De, bijna oneindige, mogelijkheden van digitale (3D print)technieken prikkelen de geest en zetten aan tot creatief denken. Voorheen onmogelijke vormen worden mogelijk en kunnen op locatie en op maat worden gemaakt. Het (primair) onderwijs ziet grote potentie in 3D (print)technieken als onderwijsthema om structureel en actief mee aan de slag te gaan in de klas, om 21ste Century Skills te ontplooien bij zowel leerkrachten als leerlingen en om als thema in te zetten binnen Wetenschap & Technologie-onderwijs. De onderwijsketen is een cruciale partner in de Human Capital Agenda met haar taak om van jongs af aan kinderen op te leiden tot een moderne professional die kan uitblinken in een snel veranderende innovatie-economie. Met dat doel voor ogen zoekt het primair onderwijs structureel naar manieren om de lesprogramma’s actueel en effectief te houden. Door een toenemend aanbod van 3D (print)technieken en diensten zoeken directies, leerkrachten maar ook het team talentontwikkeling van de Gemeente Enschede naar betrouwbare experts die de scholen advies, begeleiding en (uiteindelijk) professionalisering op maat kunnen bieden. Saxion FabLab Enschede, een publieke moderne makerspace en verbonden aan Saxion Lectoraat Industrial Design, richt zich op de verbinding tussen (HBO) onderwijs, onderzoek en het bedrijfsleven. Sinds de oprichting in 2011 krijgt het FabLab ook structureel vragen vanuit het primair onderwijs (PO) om deze doelgroep hands-on in contact te brengen met moderne (3D) technieken. Waar mogelijk zijn bovengenoemde vragen opgepakt met in samenwerking met scholen en bedrijven. Knelpunten die hierbij naar voren zijn gekomen, zijn dat leerkrachten na de opstart niet weten hoe ze onvermijdelijke technische problemen moeten oplossen en/of het ontbreekt hen de kennis om een volgende verdiepende stap (zelf) te zetten. Gevolg is dat men niet verder komt dan het doen van demonstraties en/of een eerste (simpel) productje, of dat de printers stil in een hoek staan te ver-stoffen. Deze ervaringen uit Enschede zijn in lijn met conclusies van een eerder onderzoek in Flevoland (Van Keulen & van Oenen, 2015) Doel van het traject “3D in de klas” is de bundeling van krachten binnen het consortium rondom de ontwikkeling van uitdagend en uitnodigend Wetenschap & Techniek-onderwijs voor leerling en leerkracht in het primair onderwijs, door leerkrachten te scholen in 3D printen, door lesprogramma’s te ontwikkelen die verder gaan dan het ‘printen van de standaard sleutelhanger’ en door een didactische verbreding te bieden door het koppelen van kennisdomeinen. Het initiatief voor gezamenlijk onderzoek en 3D in de Klas is opgedeeld in drie delen: Deel 1) Mapping the state of the art: leren van eerdere initiatieven en de knelpunten. Deel 2) Doelgroep betrokkenheid in kaart brengen, van leerkrachten en leerlingen, inhoudelijk en organisatorisch. Deel 3) Structurele inbedding, door afstemming op en integratie in de PO-keten. Het voorliggende projectvoorstel beslaat deel 1 van dit traject. Resultaat van dit deelproject hiervan vormt de basis voor deel 2 en 3 in een vervolgtraject, mogelijk in een RAAK-publiek vorm. Saxion FabLab Enschede heeft de afgelopen jaren een actief consortium opgebouwd dat bovenstaande impasse wil doorbreken. Het consortium bestaat naast het FabLab o.a. uit: Saxion Lectoraat Industrial Design en Academie Pedagogiek en Onderwijs, ESV, Stichting Consent, Bètatechtniek, Gemeente Enschede (Team Talentontwikkeling) en het bedrijf LAYaLAY.
In the past decades, we have faced an increase in the digitization, digitalization, and digital transformation of our work and daily life. Breakthroughs of digital technologies in fields such as artificial intelligence, telecommunications, and data science bring solutions for large societal questions but also pose a new challenge: how to equip our (future)workforce with the necessary digital skills, knowledge, and mindset to respond to and drive digital transformation?Developing and supporting our human capital is paramount and failure to do so may leave us behind on individual (digital divide), organizational (economic disadvantages), and societal level (failure in addressing grand societal challenges). Digital transformation necessitates continuous learning approaches and scaffolding of interdisciplinary collaboration and innovation practices that match complex real-world problems. Research and industry have advocated for setting up learning communities as a space in which (future) professionals of different backgrounds can work, learn, and innovate together. However, insights into how and under which circumstances learning communities contribute to accelerated learning and innovation for digital transformation are lacking. In this project, we will study 13 existing and developing learning communities that work on challenges related to digital transformation to understand their working mechanisms. We will develop a wide variety of methods and tools to support learning communities and integrate these in a Learning Communities Incubator. These insights, methods and tools will result in more effective learning communities that will eventually (a) increase the potential of human capital to innovate and (b) accelerate the innovation for digital transformation
Hoe kan de verblijfskwaliteit en veiligheidsperceptie van de publieke ruimte versterkt worden door de toepassing van “interactieve objecten”? (objecten die met beeld, licht, geluid en sensoren real time reageren op de gebruikers en de ruimte daarop afstemmen). De ontwikkeling van deze zogenaamde responsieve ruimte staat nog in de kinderschoenen maar is beloftevol vanwege de meerwaarde voor de leefbaarheid en het onderscheidend vermogen van de plek en de bedrijven. In Co-ReUs worden drie verschillende mkb groepen samengebracht: stedenbouwbureaus, creatieve conceptontwikkelaars en lokale ondernemers. We gebruiken de ArenA-Boulevard als proeftuin: een als ongezellig ervaren ruimte (lage verblijfskwaliteit en slechte veiligheidsperceptie). De mkb-ers lossen hiermee hun eigen praktijkproblemen op: Stedenbouwbureaus houden zich bezig met het ontwerp van de publieke ruimte. Zij merken dat hun instrumentarium (herontwerp, herbestrating etc.) te kapitaalintensief en te weinig flexibel is om de verblijfskwaliteit en veiligheidsperceptie op dit soort plekken op te lossen. De bureaus hebben behoefte aan een lichter, gerichter en responsiever instrumentarium. Ze hebben echter beperkte (technologische) kennis hoe interactieve objecten precies een bijdrage kunnen leveren. Creatieve conceptontwikkelaars hebben een ander probleem: zij hebben wél de beschikking over interactieve objecten (geluid, beeld, licht, sensoren) maar die zijn vooral kunstzinnig en evenementiëel. De objecten zijn stuk voor stuk niet ontwikkeld vanuit een stedenbouwkundige opgave waardoor ze hiervoor geen panklare oplossing vormen. Lokale mkb-ers hebben ook een probleem: zij weten niet goed hoe zij op een gecoördineerde manier invloed kunnen uitoefenen op de activering van de publieke ruimte. Project Co-ReUs: 1) analyseert hoe de ruimte wordt gebruikt (nulmeting en Programma van Eisen voor de inzet van interactieve objecten; 2) ontwikkelt ruimtelijk-interactieve interventies in co-creatie met de drie mkb groepen. 3) deze worden op het plein geplaatst en nametingen brengen de effecten in beeld. Het resultaat is een actiegerichte Handleiding met Roadmap voor de ontwikkeling van responsieve publieke ruimtes.