Van de flaptekst: Service design - het ontwerpen van dienstverlening verbetert bestaande diensten of ontwerpen geheel nieuwe. Daarbij wordt gekozen voor een andere invalshoek: creatief onderzoekend en gericht op de ervaringen van individuele gebruikers. Dit is een eindpublicatie van het prgramma Innoveren in Dienstverlening. In negen verschillende projecten werden door creatieve bureaus methoden van service design toegepast. Van dit boek is ook een Engelstalige versie beschikbaar.
Extending the lifespan of products can be approached in several ways. One promising way is to give users a greater sense of ownership of the products that are used. In the context of Product Service Systems (PSS), products are often used temporarily, shared with others, and offered through a technology-mediated environment. Not much is known about psychological ownership in this context. To evaluate psychological ownership affordances as an intermediate knowledge tool in the context of PSS, we started a case study focused on a bicycle sharing service of The Student Hotel (TSH). The central question was how a design approach, based on psychological ownership, can help to redesign the bicycle-service of TSH to contribute to extended lifespans of the bicycles. This resulted in ten exemplary designs as project outcomes and two implemented design interventions in a TSH branch. All project members and stakeholders (app supplier X-bike and Roetz-bikes mechanics) and students of Eindhoven University of Technology (TU/e) and Utrecht University of Applied Sciences (HU) (n=42) were interviewed on process efficiency, process quality and design quality at the end of the collaboration. We performed a qualitative analysis to identify when and how the team members applied the design tool, how these obstructed or supported the design process, and if the team members show shared understanding of the behavioral and/or social consequences of their decisions. The results show both top-down and bottom-up insights, leading to four suggestions for adapting the existing model as an intermediate knowledge tool: (1) being more goal-oriented, (2) consider a hierarchy of affordances, (3) consider to add a new affordance and (4) recognize a more active role of the service provider.
Remanufacturing is a production practice that requires the work of producers, consumers, and the government. There are benefits associated with this production model, such as improving the environment, opportunities for cost savings, and others. However, it is essential to identify the factors that affect the possibility of acceptance of this production model. This research proposes a model based on different analysis methodologies and techniques of SEM (Structural Equations Modeling) and the method of PLS (Partial Least Squares). A total of 403 responses to the survey were collected from 1 November 2021 to 15 January 2022. For the data treatment, SPSS, Excel, and WarpPLS software were used to identify the variables, factors, and their direct and indirect effects among the latent variables, referring to a scheme focused on consumer perception based on the acquisition remanufactured products. This created model served as a reference to create and develop a design and repair strategy for White goods or similar products in handling, logistics, and repair. This design strategy was transformed into a business model based on a circular economy, particularly on a Product–Service System with social, economic, and environmental benefits for producers and consumers.
Family Dairy Tech Sustainable and affordable stable management systems for family dairy farms in India. An example of Dutch technology that is useful to an ?emerging economy?. Summary Problem The demand for dairy products in India is increasing. Small and medium-sized family farmers want to capitalize on this development and the Indian government wants to support them. Dutch companies offer knowledge and a wide range of products and services to improve dairy housing systems and better milk quality, in which India is interested. However, the Dutch technology is sophisticated and expensive. For a successful entry into this market, entrepreneurs have to develop affordable and robust (?frugal?) systems and products adapted to the Indian climate and market conditions. The external question is therefore: ?How can Dutch companies specialised on dairy housing systems adapt their products and offer these on the Indian market to contribute to sustainable and profitable local dairy farming??. Goal Since 2011, VHL University of Applied Sciences (VHL) is collaborating with a college and an agricultural information center Krishi Vigyan Kendra (KVK), Baramati, Pune district, Maharashtra State India. In this region many small-scale dairy farmers are active. Within this project, KVK wants to support farmers to scale up their farm form one or a few cows up to 15 to 100 cows, with a better milk quality. In this innovative project, VHL and Saxion Universities of Applied Sciences, in collaboration with KVK and several Dutch companies want to develop integrated solutions for the growing number of dairy farms in the State of Maharashtra, India. The research questions are: 1. "How can, by smart combinations of existing and new technologies, the cow-varieties and milk- and stable-management systems in Baramati, India, for family farmers be optimized in an affordable and sustainable way?" 2. "What are potential markets in India for Dutch companies in the field of stable management and which innovative business models can support entering this market?" Results The intended results are: 1. A design of an integral stable management system for small and medium-sized dairy farms in India, composed of modified Dutch technologies. 2. A cattle improvement programme for robust cows that are adapted to the conditions of Maharashtra. 3. An advice to Dutch entrepreneurs how to develop their market position in India for their technologies. 4. An advice to Indian family farmers how they can increase their margins in a sustainable way by employing innovative technologies.
In the Netherlands, the theme of transitioning to circular food systems is high on the national agenda. The PBL Netherlands Environmental Assessment Agency has stressed that commuting to circular food chains requires a radical transformation of the food chain where (a) natural resources must be effectively used and managed (soil, water, biodiversity, minerals), (b) there must be an optimum use of food by reducing (food) waste . . ., (c) less environmental pressure, and (d) an optimum use of residue streams. The PBL also recognizes that there should be room for tailored solutions and that it is important to establish a benchmark, to be aware of impacts in the production chain and the added value of products. In the line of circular food systems, an integrated nature-inclusive circular farming approach is needed in order to develop a feasible resource-efficient and sustainable business models that brings shared value into the food chain while invigorating the rural areas including those where agricultural vacancy is occurring. Agroforestry is an example of an integrated nature-inclusive circular farming. It is a multifunctional system that diversifies and adapts the production while reducing the carbon footprint and minimizing the management efforts and input costs; where trees, crops and/or livestock open business opportunities in the food value chains as well as in the waste stream chains. To exploit the opportunities that agroforestry as an integrated resource-efficient farming system adds to the advancement towards (a) valuable circular short food chains, (b) nature-based entrepreneurship (nature-inclusive agriculture), and (c) and additionally, the re-use of abandoned agricultural spaces in the Overijssel province, this project mobilizes the private sector, provincial decision makers, financers and knowledge institutes into developing insights over the feasible implementation of agroforestry systems that can bring economic profit while enhancing and maintaining ecosystem services.
A fast growing percentage (currently 75% ) of the EU population lives in urban areas, using 70% of available energy resources. In the global competition for talent, growth and investments, quality of city life and the attractiveness of cities as environments for learning, innovation, doing business and job creation, are now the key parameters for success. Therefore cities need to provide solutions to significantly increase their overall energy and resource efficiency through actions addressing the building stock, energy systems, mobility, and air quality.The European Energy Union of 2015 aims to ensure secure, affordable and climate-friendly energy for EU citizens and businesses among others, by bringing new technologies and renewed infrastructure to cut household bills, create jobs and boost growth, for achieving a sustainable, low carbon and environmentally friendly economy, putting Europe at the forefront of renewable energy production and winning the fight against global warming.However, the retail market is not functioning properly. Many household consumers have too little choices of energy suppliers and too little control over their energy costs. An unacceptably high percentage of European households cannot afford to pay their energy bills. Energy infrastructure is ageing and is not adjusted to the increased production from renewables. As a consequence there is still a need to attract investments, with the current market design and national policies not setting the right incentives and providing insufficient predictability for potential investors. With an increasing share of renewable energy sources in the coming decades, the generation of electricity/energy will change drastically from present-day centralized production by gigawatt fossil-fueled plants towards decentralized generation, in cities mostly by local household and district level RES (e.g PV, wind turbines) systems operating in the level of micro-grids. With the intermittent nature of renewable energy, grid stress is a challenge. Therefore there is a need for more flexibility in the energy system. Technology can be of great help in linking resource efficiency and flexibility in energy supply and demand with innovative, inclusive and more efficient services for citizens and businesses. To realize the European targets for further growth of renewable energy in the energy market, and to exploit both on a European and global level the expected technological opportunities in a sustainable manner, city planners, administrators, universities, entrepreneurs, citizens, and all other relevant stakeholders, need to work together and be the key moving wheel of future EU cities development.Our SolutionIn the light of such a transiting environment, the need for strategies that help cities to smartly integrate technological solutions becomes more and more apparent. Given this condition and the fact that cities can act as large-scale demonstrators of integrated solutions, and want to contribute to the socially inclusive energy and mobility transition, IRIS offers an excellent opportunity to demonstrate and replicate the cities’ great potential. For more information see the HKU Smart Citieswebsite or check out the EU-website.