In today’s world, digital transformation enhancement in IT sector becomes crucial for efficient solutions in organizations. Institutions in public sector try to enrich its process solutions with additional products and services. On the other hand, especially in developing countries, there is a high tendency to obtain products with domestic resources in order to reduce financial expenses. Besides, it may be crucial for public and military institutions to develop IT products with domestic resources in order to preserve data security and privacy. Thus, there is a need to develop a reliable scale to measure nationality and domesticity of products. This study attempts to construct a methodology for determining country of origin of IT products. Suggested methodology was verified by interviews with experts in subject area.
Although several studies have looked at the effects of online product presentations on consumer decision making, no study thus far has considered a potential key factor in online product evaluations: tangibility. The present study aims at filling this gap by developing and testing a model that relates different online product presentation formats to the three-dimensional concept of product tangibility. We test how the three tangibility dimensions influence perceived diagnosticity and, eventually, online purchase intentions.
Purpose: This paper aims to summarize the results of an empirical project to understand the perceptions of consumers of the future high end products in the USA. This project was a precursor of a larger global project on the topic. Design/methodology/approach: The approach utilizes the consumer insights-driven process, rule-developing experimentation (RDE), introduced by the senior authors and developed in cooperation with Wharton School of Business (University of Pennsylvania). The empirical part was conducted with qualified US consumers (middle- and upper-middle class respondents). Based on a series of in-depth qualitative interviews with global leaders of luxury and premium companies, star designers and thought leaders, five dimensions of high end offering were identified, with each dimension having a unique set of four factors (elements). The second part included a quantitative survey based on RDE (modified conjoint analysis) conducted in the USA with 373 qualified middle- and upper-middle class respondents to discover the driving forces behind their perceptions of high end. Findings: There are four distinct consumer mindsets towards future high end products. The segmentation is based on a disciplined experimentation afforded by RDE and produces a more targeted understanding of the consumer mind. Practical implications: The paper provides insights of what might drive the consumer perception of high end products in the near future. The pattern-based consumer mind-set segmentation creates actionable directions for corporations in answering today's big question "How can brands migrate from being cost-driven commodities to higher margins and profits?" The answer is in the high end. Originality/value: The approach offered here could help designers and brand managers to efficiently create better products that consumers like and perceive as high end. This will result in higher margins and help marketers to differentiate their respective products from the competition.
LINK
The production of denim makes a significant contribution to the environmental impact of the textile industry. The use of mechanically recycled fibers is proven to lower this environmental impact. MUD jeans produce denim using a mixture of virgin and mechanically recycled fibers and has the goal to produce denim with 100% post-consumer textile by 2020. However, denim fabric with 100% mechanically recycled fibers has insufficient mechanical properties. The goal of this project is to investigate the possibilities to increase the content of recycled post-consumer textile fibers in denim products using innovative recycling process technologies.
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.