To elucidate how authoritative knowledge is established for better dealing with unstructured urban problems, this article describes how collaborations between researchers and officials become an instrument for conceptualizing and addressing policy problems. A case study is used to describe a research consortium evaluating the controversial practice of ‘Lifestyle’ based housing allocation in the Dutch domain of social-housing. Analyzing this case in key episodes, we see researchers and policymakers selectively draw on established institutional practices—their so called ‘home practices’—to jointly (re-)structure problems. In addition, we find that restructuring problems is not only intertwined with, but also deliberately aimed at (re-)structuring the relations within and between the governmental practices, the actors are embedded in. It is by selectively tinkering with knowledges, values, norms, and criteria that the actors can deliberately enable and constrain the ways a real-world problem is addressed.
In the course of our supervisory work over the years, we have noticed that qualitative research tends to evoke a lot of questions and worries, so-called frequently asked questions (FAQs). This series of four articles intends to provide novice researchers with practical guidance for conducting high-quality qualitative research in primary care. By ‘novice’ we mean Master’s students and junior researchers, as well as experienced quantitative researchers who are engaging in qualitative research for the first time. This series addresses their questions and provides researchers, readers, reviewers and editors with references to criteria and tools for judging the quality of qualitative research papers. This second article addresses FAQs about context, research questions and designs. Qualitative research takes into account the natural contexts in which individuals or groups function to provide an in-depth understanding of real-world problems. The research questions are generally broad and open to unexpected findings. The choice of a qualitative design primarily depends on the nature of the research problem, the research question(s) and the scientific knowledge one seeks. Ethnography, phenomenology and grounded theory are considered to represent the ‘big three’ qualitative approaches. Theory guides the researcher through the research process by providing a ‘lens’ to look at the phenomenon under study. Since qualitative researchers and the participants of their studies interact in a social process, researchers influence the research process. The first article described the key features of qualitative research, the third article will focus on sampling, data collection and analysis, while the last article focuses on trustworthiness and publishing.
In this document, we provide the methodological background for the Safety atWork project. This document combines several project deliverables as defined inthe overall project plan: validation techniques and methods (D5.1.1), performanceindicators for safety at work (D5.1.2), personal protection equipment methods(D2.1.2), situational awareness methods (D3.1.2), and persuasive technology methods(D4.1.2).
MULTIFILE
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.