Context:Up to 90% of pediatric athletes return to sport (RTS) after anterior cruciate ligament reconstruction (ACL-R); however, <50% RTS at the same level and second ACL injury rates are up to 32%.Objectives:(1) Determine which physical and patient-reported outcome measures guide clinical decision-making on RTS in pediatric athletes after ACL-R and (2) present a framework with insights from cognitive and neurophysiological domains to enhance rehabilitation outcomes.Data Sources:PubMed, CINAHL, Embrase, and Cochrane library databases and gray literature.Study Selection:Data on pediatric (<18 years) ACL-R patients, RTS, tests, and decision-making were reported in 1214 studies. Two authors independently reviewed titles and abstract, excluding 962 studies. Gray literature and cross-reference checking resulted in 7 extra studies for full-text screening of 259 studies. Final data extraction was from 63 eligible studies.Study Design:Scoping review.Level of Evidence:Level 4.Data Extraction:Details on study population, aims, methodology, intervention, outcome measures, and important results were collected in a data chart.Results:Studies included 4456 patients (mean age, 14 years). Quadriceps and hamstring strength (n = 25), knee ligament arthrometer (n = 24), and hop tests (n = 22) were the most-reported physical outcome measures guiding RTS in <30% of studies with cutoff scores of limb symmetry index (LSI) ≥85% or arthrometer difference <3 mm. There were 19 different patient-reported outcome measures, most often reporting the International Knee Documentation Committee (IKDC) (n = 24), Lysholm (n = 23), and Tegner (n = 15) scales. Only for the IKDC was a cutoff value of 85% reported.Conclusion:RTS clearance in pediatric ACL-R patients is not based on clear criteria. If RTS tests were performed, outcomes did not influence time of RTS. Postoperative LSI thresholds likely overestimate knee function since biomechanics are impaired despite achieving RTS criteria. RTS should be considered a continuum, and biomechanical parameters and contextual rehab should be pursued with attention to the individual, task, and environment. There is a need for psychological monitoring of the ACL-R pediatric population.
DOCUMENT
BACKGROUND: A limited number of patients return to sport (RTS) after an anterior cruciate ligament reconstruction (ACLR) and patients who RTS have a relatively high risk for second ACL injury. The purpose of the current study was to compare the results of a test battery between patients who returned to the pre-injury level of sport (RTS group) and patients who did not (NO-RTS group). It was hypothesized that the RTS group showed better test results.METHODS: Sixty-four patients (age 27.8 ± 8.8 years) were included. The results of a multicomponent test battery (jump-landing task assessed with the Landing Error Scoring System (LESS), three hop tests, isokinetic strength test for quadriceps and hamstring) were compared between groups with a 2 × 2 ANOVA.RESULTS: The RTS group showed a significantly lower LESS score (p = 0.010), significantly higher absolute scores on hop tests with both legs (injured leg: single leg hop test p = 0.013, triple leg hop test p = 0.024, side hop test p = 0.021; non-injured leg: single leg hop test p = 0.011, triple leg hop test p = 0.023, side hop test p = 0.032) and significantly greater hamstring strength in the injured leg (p = 0.009 at 60°/s, p = 0.012 at 180°/s and p = 0.013 at 300°/s). No differences in test results were identified between patients who sustained a second ACL injury and patients who did not.CONCLUSION: Patients after ACLR with better jump-landing patterns, hop performance and greater hamstring strength have greater likelihood for RTS. However, our findings show that RTS criteria fail to identify patients who are at risk for a second ACL injury.
DOCUMENT
Sports are activities enjoyed by many across the globe, regardless of age. The existence and promotion of youth sports has often been based on various assumptions about its value and role in society. Sports participation is assumed to be fun and good and is assumed to contribute to the development of young people. As a result, sports are often seen as an essential part of life for youth. Participation in sports and physical activity is assumed to help young people to develop in a context in which they are able to learn important positive societal values (Fraser-Thomas et al., 2005; Holt, 2008). Although there is a widespread belief in the positive dimensions of sports participation for young people, there is a need for research and theory that identifies and critically looks at the processes through which sports participation by youth is experienced and shapes their lives (Coakley, 2011). I return to this critical perspective after I elaborate on the ways sports are viewed as important effective activities for positive youth development.
DOCUMENT
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
The anterior cruciate ligament (ACL) is a strong rope-like tissue which connects the femur to the tibia in the knee joint. Its function is to provide structural stability to the knee while preventing unnatural forward movement of the tibia relative to the femur. Acute complete ACL ruptures during movements like knee hyperextension or sudden changes of direction (pivoting) damage two entities: the ligament itself and its nerve connections to the posterior tibial nerve (PTN). PTN innervation in the ACL is essential for: a) proprioception (e.g. perception of position and movement/acceleration experienced by the ligament), and b) stability of the knee joint. Upon ACL rupture, the orthopedic surgeon reconstructs the ACL with a graft from the hamstring, patellar or quadriceps tendon. After the surgery, the goal is to regain neuromuscular control and dynamic stabilization during rehabilitation as soon as possible for a quick return to sports and daily activities. However, surgeons are not able to reconstruct the nerve gap between the PTN and the grafted ligament due to the microscopic size of the innervation in the ACL. Not linking the PTN to the graft creates a disconnection between the knee joint and the spinal cord. To mitigate these disadvantages in ACL surgery, this study focuses on activating the growth of proprioception nerve endings using a ligament loaded with growth factors (neurotrophins). We hypothesize that neurotrophins will activate proprioceptive fibers of neurons close to the ACL. We describe graft fabrication steps and in vitro experiments to expand on the regeneration capacity of a commercially available ACL-like synthetic ligament called LARS. The results will bring the ACL regeneration field closer to having a graft that can aid patients in regaining mobility and stability during locomotion and running, confidence in the strength of the knee joint, and quick return to sports.
To enable circularity new tools are needed. Regulatory compliance with the European Commission has introduced the Digital Product Passport (DPP) as part of the Ecodesign for Sustainable Products Regulation (ESPR). This framework requires traceability across all production tiers, including Tier 4, which covers raw material origins. The textile clothing leather and footwear (TCLF) sector has been identified as priority categories for DPP adoption, with mandatory compliance set between 2027 and 2030. DPP system standardizes lifecycle value chain data and includes information on material origin, manufacturing, assembly, and end-of-life handling. For the Dutch textile sector, comprising of almost 11,000 companies, DPP implementation presents significant challenges due to fragmented data infrastructure and long product lifecycles. Traditional identifiers (e.g., QR-codes, RFID) are often damaged or removed, limiting their effectiveness. Molecular characterization—using established techniques like spectral and chemical analysis—is emerging as the only reliable long-term solution for persistent, product-embedded identification. These molecular methods allow precise validation of fiber content, wear analysis, and recyclability, addressing compliance and end-of-life traceability issues. The Molecular Digital Physical Digital Product Passport (M-DPP) initiative demonstrates a practical application of these techniques for wool and cotton. It employs co-design to ensure regulatory alignment and develops an open-source API to support automated validation, extended producer responsibility (EPR), return and reuse (RE), textile lifecycle recovery (TLR), and material sorting and recycling (MSR). Smart contract functionality enables automated execution within deposit-refund systems, improving traceability and circularity. An iterative, design-thinking methodology underpins system development, ensuring adaptability to evolving standards. Pilot testing in collaboration with fashion and interior partners will validate the molecular sensing and data integration approach. Dissemination and scaling will occur through partnerships with NewTexEco, Circolab, DCTV, and TNO’s Center of Excellence for DPPs, aligning with European standardization efforts and enabling sector-wide adoption.