The use of robots as educational tools provides a stimulating environment for students. Some robotics competitions focus on primary and secondary school aged children, and serve as motivation for students to get involved in educational robotics activities. Although very appealing, many students cannot participate on robotics competitions because they cannot afford robotics kits. Hence, several students have no access to educational robotics, especially on developing countries. To minimize this problem and contribute to education equality, we have created RoSoS Robot Soccer Simulator, in which students program virtual robots in a similar way that they would program their real ones. In this chapter we explain some technical details of RoSoS and discuss the implementation of a new league for the robotics competitions: Junior Soccer Simulation league (JSS). Because soccer is the most popular sport in the world, we believe JSS will be a strong motivator for students to get involved with robotics.
DOCUMENT
For almost 25 years, the goal of the RoboCup has been to build soccer robots capable of winning against the FIFA World Champion of 2050. To foster the participation of the next generation of roboticists, the RoboCupJunior competition takes place in parallel and provides a similar challenge of appropriate difficulty for high school students. RoboCupJunior has three main categories: Soccer, Rescue and OnStage. For the Soccer category, participants need to design, build and program a team of autonomous robots to play soccer against an opponent team of robots. The competition is physical in nature, since it assumes physical robots playing against one another. In 2020 and 2021, the COVID-19 pandemic has made it difficult for a competition of this type to take place, due to obvious restrictions on physical gatherings. To allow for some sort of participation, and inspired by positive experience of the larger RoboCup community, the Organizing Committee of RoboCupJunior Soccer has explored porting a portion of the challenge to a simulated environment. Many of the existing environments, however, are built for higher education/research teams competitions or research, making them complex to deploy and generally unsuitable for high school students. In this paper we present the development of SoccerSim, a simulated environment for RoboCupJunior Soccer, based on the Webots open-source robotics simulator. We also discuss how the participation of students was key for its development and present a summary of the competition rules. We further describe the case study of utilizing SoccerSim first as a testbed for a Demo competition, and later as part of RoboCup Worldwide 2021. The participation of more than 60 teams from over 20 countries suggests that SoccerSim provides an affordable alternative to physical robotics platforms, while being stable enough to support a diverse userbase. The experience of using SoccerSim at RoboCupJunior Worldwide 2021 suggests that a simulated environment significantly lowers the barrier to entry, as evidenced by the participation of many teams that have not participated before. To make it easy for similar competitions to take place in the future, we made the code of SoccerSim available as open-source, as well as the associated tooling required for using it in a tournament.
DOCUMENT
The use of robots as educational tools provide a stimulating environment for students. Some robotics competitions focus on primary and secondary school aged children, and serve as a motivation factor for students to get involved in educational robotics activities. But, in most competitions students are required to deal with robot design, construction and programming. Although very appealing, many students cannot participate on robotics competitions because they cannot afford robotics kits and their school do not have the necessary equipment. Because of that, several students have no access to educational robotics, especially on developing countries. To minimize this problem and contribute to education equality, we present a proposal for a new league for the robotics competitions: The Junior Soccer Simulation league (JSS). In such a league, students program virtual robots in a similar way that they would program their real ones. Because there is no hardware involved, costs are very low and participants can concentrate on software development and robot's intelligence improvement. Finally, because soccer is the most popular sport in the world, we believe JSS will be a strong motivator for students to get involved with robotics. In this paper we present the simulator that was developed (ROSOS) and discuss some ideas for the adoption of a Junior Soccer Simulation competition.
DOCUMENT
Dit essay geeft een systeemvisie op het ontwikkelen van embedded software voor slimme systemen: (mobiele) robots en sensornetwerken.
DOCUMENT
This study investigates what pupils aged 10-12 can learn from working with robots, assuming that understanding robotics is a sign of technological literacy. We conducted cognitive and conceptual analysis to develop a frame of reference for determining pupils' understanding of robotics. Four perspectives were distinguished with increasing sophistication; psychological, technological, function, and controlled system. Using Lego Mindstorms NXT robots, as an example of a Direct Manipulation Environment, we developed and conducted a lesson plan to investigate pupils' reasoning patterns. There is ample evidence that pupils have little difficulty in understanding that robots are man-made technological and functional artifacts. Pupils' understanding of the controlled system concept, more specifically the complex sense-reason-act loop that is characteristic of robotics, can be fostered by means of problem solving tasks. The results are discussed with respect to pupils' developing technological literacy and the possibilities for teaching and learning in primary education.
LINK
Key to reinforcement learning in multi-agent systems is the ability to exploit the fact that agents only directly influence only a small subset of the other agents. Such loose couplings are often modelled using a graphical model: a coordination graph. Finding an (approximately) optimal joint action for a given coordination graph is therefore a central subroutine in cooperative multi-agent reinforcement learning (MARL). Much research in MARL focuses on how to gradually update the parameters of the coordination graph, whilst leaving the solving of the coordination graph up to a known typically exact and generic subroutine. However, exact methods { e.g., Variable Elimination { do not scale well, and generic methods do not exploit the MARL setting of gradually updating a coordination graph and recomputing the joint action to select. In this paper, we examine what happens if we use a heuristic method, i.e., local search, to select joint actions in MARL, and whether we can use outcome of this local search from a previous time-step to speed up and improve local search. We show empirically that by using local search, we can scale up to many agents and complex coordination graphs, and that by reusing joint actions from the previous time-step to initialise local search, we can both improve the quality of the joint actions found and the speed with which these joint actions are found.
LINK
Described are a number of national and local initiatives that are taken to motivate young people to choose for technical education. From the local initiatives we focus on the area where Fontys and Actemium are located; the southeast of the Netherlands. Not only governmental organizations and foundations are active in this field but also (industrial) companies become more aware of the fact that creating interest for professions in technology should start at the earliest possible age. History shows that initiatives become more effective when not only directed to promotion, but accompanied by appropriate projects. We conclude with an example of a technology event and a discussion of the effectiveness of the initiatives.
DOCUMENT
Lectorale rede waarin wordt ingegaan op de manier waarop de mens nu binnen zijn natuurlijke omgeving functioneert. Dit wordt getypeerd als een ‘mismatch’. Tegelijkertijd is de lector er ook van overtuigd dat de technologie uiteindelijk zorgt voor een beter leven.
DOCUMENT
The continuation of emotional abuse as a normalized practice in elite youth sport has received scholarly attention, often with the use of a Foucauldian framework. The use of sense-making, a theoretical framework that focuses on how meaning is created in ambiguous situations, may give additional insights into the continuation of emotionally abusive coaching practices. The purpose of this study was to apply the seven properties of sense-making to explore how athletes and parents made sense of coaching practices in elite women’s gymnastics. We interviewed 14 elite women gymnasts and their parents to examine how they made sense of what occurred during practices. The results show how the sense-making of athletes and parents was an ongoing activity that resulted in a code of silence and a normalization of abusive coaching practices.
MULTIFILE