The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
DOCUMENT
The aim of the present study was to investigate if the presence of anterior cruciate ligament (ACL) injury risk factors depicted in the laboratory would reflect at-risk patterns in football-specific field data. Twenty-four female footballers (14.9 ± 0.9 year) performed unanticipated cutting maneuvers in a laboratory setting and on the football pitch during football-specific exercises (F-EX) and games (F-GAME). Knee joint moments were collected in the laboratory and grouped using hierarchical agglomerative clustering. The clusters were used to investigate the kinematics collected on field through wearable sensors. Three clusters emerged: Cluster 1 presented the lowest knee moments; Cluster 2 presented high knee extension but low knee abduction and rotation moments; Cluster 3 presented the highest knee abduction, extension, and external rotation moments. In F-EX, greater knee abduction angles were found in Cluster 2 and 3 compared to Cluster 1 (p = 0.007). Cluster 2 showed the lowest knee and hip flexion angles (p < 0.013). Cluster 3 showed the greatest hip external rotation angles (p = 0.006). In F-GAME, Cluster 3 presented the greatest knee external rotation and lowest knee flexion angles (p = 0.003). Clinically relevant differences towards ACL injury identified in the laboratory reflected at-risk patterns only in part when cutting on the field: in the field, low-risk players exhibited similar kinematic patterns as the high-risk players. Therefore, in-lab injury risk screening may lack ecological validity.
MULTIFILE
Functional Magnetic Resonance Imaging (fMRI) was used to study the activation of cerebral motor networks during auditory perception of music in professional keyboard musicians (n=12). The activation paradigm implied that subjects listened to two-part polyphonic music, while either critically appraising the performance or imagining they were performing themselves. Two-part polyphonic audition and bimanual motor imagery circumvented a hemisphere bias associated with the convention of playing the melody with the right hand. Both tasks activated ventral premotor and auditory cortices, bilaterally, and the right anterior parietal cortex, when contrasted to 12 musically unskilled controls. Although left ventral premotor activation was increased during imagery (compared to judgment), bilateral dorsal premotor and right posterior-superior parietal activations were quite unique to motor imagery. The latter suggests that musicians not only recruited their manual motor repertoire but also performed a spatial transformation from the vertically perceived pitch axis (high and low sound) to the horizontal axis of the keyboard. Imagery-specific activations in controls were seen in left dorsal parietal-premotor and supplementary motor cortices. Although these activations were less strong compared to musicians, this overlapping distribution indicated the recruitment of a general 'mirror-neuron' circuitry. These two levels of sensori-motor transformations point towards common principles by which the brain organizes audition-driven music performance and visually guided task performance.
DOCUMENT
Literature highlights the need for research on changes in lumbar movement patterns, as potential mechanisms underlying the persistence of low-back pain. Variability and local dynamic stability are frequently used to characterize movement patterns. In view of a lack of information on reliability of these measures, we determined their within- and between-session reliability in repeated seated reaching. Thirty-six participants (21 healthy, 15 LBP) executed three trials of repeated seated reaching on two days. An optical motion capture system recorded positions of cluster markers, located on the spinous processes of S1 and T8. Movement patterns were characterized by the spatial variability (meanSD) of the lumbar Euler angles: flexion–extension, lateral bending, axial rotation, temporal variability (CyclSD) and local dynamic stability (LDE). Reliability was evaluated using intraclass correlation coefficients (ICC), coefficients of variation (CV) and Bland-Altman plots. Sufficient reliability was defined as an ICC ≥ 0.5 and a CV < 20%. To determine the effect of number of repetitions on reliability, analyses were performed for the first 10, 20, 30, and 40 repetitions of each time series. MeanSD, CyclSD, and the LDE had moderate within-session reliability; meanSD: ICC = 0.60–0.73 (CV = 14–17%); CyclSD: ICC = 0.68 (CV = 17%); LDE: ICC = 0.62 (CV = 5%). Between-session reliability was somewhat lower; meanSD: ICC = 0.44–0.73 (CV = 17–19%); CyclSD: ICC = 0.45–0.56 (CV = 19–22%); LDE: ICC = 0.25–0.54 (CV = 5–6%). MeanSD, CyclSD and the LDE are sufficiently reliable to assess lumbar movement patterns in single-session experiments, and at best sufficiently reliable in multi-session experiments. Within-session, a plateau in reliability appears to be reached at 40 repetitions for meanSD (flexion–extension), meanSD (axial-rotation) and CyclSD.
MULTIFILE
The objective of this report is to share the results of the test that we have made to evaluate the localization performance of the Spot robot across three scenarios, each featuring different velocities in both translation and rotation.
MULTIFILE
Background: Development of more effective interventions for nonspecific chronic low back pain (LBP), requires a robust theoretical framework regarding mechanisms underlying the persistence of LBP. Altered movement patterns, possibly driven by pain-related cognitions, are assumed to drive pain persistence, but cogent evidence is missing. Aim: To assess variability and stability of lumbar movement patterns, during repetitive seated reaching, in people with and without LBP, and to investigate whether these movement characteristics are associated with painrelated cognitions. Methods: 60 participants were recruited, matched by age and sex (30 back-healthy and 30 with LBP). Mean age was 32.1 years (SD13.4). Mean Oswestry Disability Index-score in LBP-group was 15.7 (SD12.7). Pain-related cognitions were assessed by the ‘Pain Catastrophizing Scale’ (PCS), ‘Pain Anxiety Symptoms Scale’ (PASS) and the task-specific ‘Expected Back Strain’ scale(EBS). Participants performed a seated repetitive reaching movement (45 times), at self-selected speed. Lumbar movement patterns were assessed by an optical motion capture system recording positions of cluster markers, located on the spinous processes of S1 and T8. Movement patterns were characterized by the spatial variability (meanSD) of the lumbar Euler angles: flexion-extension, lateralbending, axial-rotation, temporal variability (CyclSD) and local dynamic stability (LDE). Differences in movement patterns, between people with and without LBP and with high and low levels of pain-related cognitions, were assessed with factorial MANOVA. Results: We found no main effect of LBP on variability and stability, but there was a significant interaction effect of group and EBS. In the LBP-group, participants with high levels of EBS, showed increased MeanSDlateral-bending (p = 0.004, η2 = 0.14), indicating a large effect. MeanSDaxial-rotation approached significance (p = 0.06). Significance: In people with LBP, spatial variability was predicted by the task-specific EBS, but not by the general measures of pain-related cognitions. These results suggest that a high level of EBS is a driver of increased spatial variability, in participants with LBP.
DOCUMENT
Modifiable (biomechanical and neuromuscular) anterior cruciate ligament (ACL) injury risk factors have been identified in laboratory settings. These risk factors were subsequently used in ACL injury prevention measures. Due to the lack of ecological validity, the use of on-field data in the ACL injury risk screening is increasingly advocated. Though, the kinematic differences between laboratory and on-field settings have never been investigated. The aim of the present study was to investigate the lower-limb kinematics of female footballers during agility movements performed both in laboratory and football field environments. Twenty-eight healthy young female talented football (soccer) players (14.9 ± 0.9 years) participated. Lower-limb joint kinematics was collected through wearable inertial sensors (Xsens Link) in three conditions: (1) laboratory setting during unanticipated sidestep cutting at 40-50°; on the football pitch (2) football-specific exercises (F-EX) and (3) football games (F-GAME). A hierarchical two-level random effect model in Statistical Parametric Mapping was used to compare joint kinematics among the conditions. Waveform consistency was investigated through Pearson's correlation coefficient and standardized z-score vector. In-lab kinematics differed from the on-field ones, while the latter were similar in overall shape and peaks. Lower sagittal plane range of motion, greater ankle eversion, and pelvic rotation were found for on-field kinematics (p < 0.044). The largest differences were found during landing and weight acceptance. The biomechanical differences between lab and field settings suggest the application of context-related adaptations in female footballers and have implications in ACL injury prevention strategies. Highlights: Talented youth female football players showed kinematical differences between the lab condition and the on-field ones, thus adopting a context-related motor strategy. Lower sagittal plane range of motion, greater ankle eversion, and pelvic rotation were found on the field. Such differences pertain to the ACL injury mechanism and prevention strategies. Preventative training should support the adoption of non-linear motor learning to stimulate greater self-organization and adaptability. It is recommended to test football players in an ecological environment to improve subsequent primary ACL injury prevention programmes.
DOCUMENT
This paper assesses wind resource characteristics and energy yield for micro wind turbines integrated on noise barriers. An experimental set-up with sonic anemometers placed on top of the barrier in reference positions is realized. The effect on wind speed magnitude, inflow angle and turbulence intensity is analysed. The annual energy yield of a micro wind turbine is estimated and compared using data from a micro-wind turbine wind tunnel experiment and field data. Electrical energy costs are discussed as well as structural integration cost reduction and the potential energy yield could decrease costs. It was found that instantaneous wind direction towards the barrier and the height of observation play an influential role for the results. Wind speed increases in perpendicular flows while decreases in parallel flow, by +35% down to −20% from the reference. The azimuth of the noise barrier expressed in wind field rotation angles was found to be influential resulted in 50%–130% changes with respect to annual energy yield. A micro wind turbine (0.375 kW) would produce between 100 and 600 kWh annually. Finally, cost analysis with cost reductions due to integration and the energy yield changes due to the barrier, show a LCOE reduction at 60%–90% of the reference value. https://doi.org/10.1016/j.jweia.2020.104206
DOCUMENT
Author supplied: "This paper gives a linearised adjustment model for the affine, similarity and congruence transformations in 3D that is easily extendable with other parameters to describe deformations. The model considers all coordinates stochastic. Full positive semi-definite covariance matrices and correlation between epochs can be handled. The determination of transformation parameters between two or more coordinate sets, determined by geodetic monitoring measurements, can be handled as a least squares adjustment problem. It can be solved without linearisation of the functional model, if it concerns an affine, similarity or congruence transformation in one-, two- or three-dimensional space. If the functional model describes more than such a transformation, it is hardly ever possible to find a direct solution for the transformation parameters. Linearisation of the functional model and applying least squares formulas is then an appropriate mode of working. The adjustment model is given as a model of observation equations with constraints on the parameters. The starting point is the affine transformation, whose parameters are constrained to get the parameters of the similarity or congruence transformation. In this way the use of Euler angles is avoided. Because the model is linearised, iteration is necessary to get the final solution. In each iteration step approximate coordinates are necessary that fulfil the constraints. For the affine transformation it is easy to get approximate coordinates. For the similarity and congruence transformation the approximate coordinates have to comply to constraints. To achieve this, use is made of the singular value decomposition of the rotation matrix. To show the effectiveness of the proposed adjustment model total station measurements in two epochs of monitored buildings are analysed. Coordinate sets with full, rank deficient covariance matrices are determined from the measurements and adjusted with the proposed model. Testing the adjustment for deformations results in detection of the simulated deformations."
MULTIFILE
BACKGROUND: The design and manufacturing of effective foot orthoses is a complex multidisciplinary problem involving biomedical and gait pattern aspects, technical material and geometric design elements as well as psychological and social contexts. This complexity contributes to the current trial-and-error and experience-based orthopedic footwear practice in which a major part of the expertise is implicit. This hampers knowledge transfer, reproducibility and innovation. OBJECTIVE/METHODS: A systematic review of literature has been performed to find evidence of explicit knowledge, quantitative guidelines and design motivations of pedorthists. RESULTS: 17 studies have been included. No consensus is found on which measurable parameters ensure proper foot and ankle functioning. Parameters suggested are: neutral foot positioning and control of rearfoot motion, maximum arch, but also tibial internal/external rotation as well as a three point force system. Also studies evaluating foot orthoses centering on the diagnosis or orthosis type find no clear guidelines for treatment or for measuring the effectiveness. CONCLUSIONS: A gap in the translation from diagnosis to a specific, customized and quantified effective orthosis design is identified. Suggested solutions are both top-down, fitting of patient data in simulations, as well as bottom-up, quantifying current practices of pedorthists in order to develop new practical guidelines and evidence-based procedures.
DOCUMENT