The continuous increase of accident and incident reports has indicated the potential of drones to threaten public safety. The published regulatory framework for small drones is not visibly based on a comprehensive hazard analysis. Also, a variety in the constraints imposed by different regulatory frameworks across the globe might impede market growth and render small-drone operations even more complicated since light drones might be easily transferred and operated in various regions with diverse restrictions. In our study we applied the Systems-Theoretic Process Analysis (STPA) method to small-drone operations and we generated a first set of Safety Requirements (SR) for the authority, manufacturer, end-user and automation levels. Under the scope of this paper, we reviewed 56 drone regulations published by different authorities, and performed (1) a gap analysis against the 57 SRs derived by STPA for the authority level, and (2) Intra-Class Correlations in order to examine the extent of their harmonization. The results suggest that the regulations studied satisfy 5.3% to 66.7% of the SRs, and they are moderately similar. The harmonization is even lower when considering the range of values of various SRs addressed by the authorities. The findings from the drones’ case show that regulators might not similarly and completely address hazards introduced by new technology; such a condition might affect safety and impede the distribution and use of products in the international market. A timely and harmonized standardization based on a systematic hazard analysis seems crucial for tackling the challenges stemmed from technological advancements, especially the ones available to the public.
DOCUMENT
Particulate matter (PM) exposure, amongst others caused by emissions and industrial processes, is an important source of respiratory and cardiovascular diseases. There are situations in which blue-collar workers in roadwork companies are at risk. This study investigated perceptions of risk and mitigation of employees in roadwork (construction and maintenance) companies concerning PM, as well as their views on methods to empower safety behavior, by means of a mental models approach. We held semi-structured interviews with twenty-two employees (three safety specialists, seven site managers and twelve blue-collar workers) in three different roadwork companies. We found that most workers are aware of the existence of PM and reduction methods, but that their knowledge about PM itself appears to be fragmented and incomplete. Moreover, road workers do not protect themselves consistently against PM. To improve safety instructions, we recommend focusing on health effects, reduction methods and the rationale behind them, and keeping workers’ mental models into account. We also recommend a healthy dialogue about work-related risk within the company hierarchy, to alleviate both information-related and motivation-related safety issues. https://doi.org/10.1016/j.ssci.2019.06.043 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
DOCUMENT
Electromagnetic fields, or EMF, are ubiquitous in our daily life. Extremely low frequency magnetic fields (ELF MF) are generated by any device using electric current. Especially in workplace situations involving MRI scanners, welding equipment, induction heaters, and power plants, they are known for potentially high field strengths. These high field strengths may lead to adverse health effects if insufficient preventive measures are in place. This study investigates employees’ perceptions on work safety regarding EMF exposure. We held 15 semi-structured interviews in three different (non-nuclear) power plants in the Netherlands. We found that power plants in this study made ample use of fences and warning signs where needed, creating a safe working environment. Nevertheless, some workers perceive that there are vague regulations, organizational issues and lack of clarity on the properties of EMF. Participants also indicated that there is some room for improvement with respect to work safety meetings on EMF. Employees want to be informed about EMF and its potential health effects and mitigation methods, but their information need is limited and straightforward. A simple warning system, along with safety information on paper, may be sufficient. https://doi.org/10.1080/13669877.2020.1750459 LinkedIn: https://www.linkedin.com/in/john-bolte-0856134/
MULTIFILE
Logistics represents around 10-11% of global CO2 emissions, around 75% of which come from road freight transport. ‘The European Green Deal’ is calling for drastic CO2 reduction in this sector. This requires advanced and very expensive technological innovations; i.e. re-design of vehicle units, hybridization of powertrains and automatic vehicle technology. Another promising way to reach these environmental ambitions, without excessive technological investments, is the deployment of SUPER ECO COMBI’s (SEC). SEC is the umbrella name for multiple permutations of 32 meter, 70 tons, road-train combinations that can carry the payload-equivalent of 2 normal tractor-semitrailer combinations and even 3 rigid trucks. To fully deploy a SEC into the transport system the compliance with the existing infrastructure network and safety needs to be guaranteed; i.e. to deploy a specific SEC we should be able to determine which SEC-permutation is most optimal on specific routes with respect to regulations (a.o. damage to the pavement/bridges), the dimensions of specific infrastructures (roundabouts, slopes) and safety. The complexity of a SEC compared to a regular truck (double articulation, length) means that traditional optimisation methods are not applicable. The aim of this project is therefore to develop a first methodology enabling the deployment of the optimal SEC permutation. This will help transport companies (KIEM: Ewals) and trailer manufactures (KIEM: Emons) to invest in the most suitable designs for future SEC use. Additionally the methodology will help governments to be able to admit specific SEC’s to specific routes. The knowledge gained in this project will be combined with the knowledge of the broader project ENVELOPE (NWA-IDG). This will be the start of broader research into an overall methodology of deploying optimal vehicle combinations and a new regulatory framework. The knowledge will be used in master courses on vehicle dynamics.
The "SporeSpotter" project aims to develop an advanced bacterial spore detection platform for the dairy industry. Bacterial spores pose serious health and economic risks such as from Clostridium Tyrobutyricum and Bacillus cereus species. These spores can survive standard pasteurization processes and lead to contamination in dairy products. Even a low number present can cause serious consequences. Especially, the request of Clostridial spore detection related to cheesemaking process is urgent for milk quality monitoring. The related late blowing defect caused by these spores can affect up to 10-25% of hard cheese production, resulting in significant financial losses amounting to millions of euros annually [1]. Our proposed solution integrates particle-based selection, magnetic enrichment and Surface-Enhanced Raman Scattering (SERS) technology to detect Clostridium Tyrobutyricum spores in milk samples. This innovative approach promises a fast, simple, and accurate method for identifying low concentrations of bacterial spores, reducing detection times from days to hours. By collaborating with academic and industry partners Qlip BV, Avantes BV, Nostics BV, PE4A BV and NobleBio BV, the Applied Nanotechnology group (ANT) of Saxion will develop a proof-of-concept sensing technology that can potentially detect bacterial spore levels down to 102 CFU/ml in real milk samples, improving safety and efficiency in the dairy industry. This project is critical to meet the growing demand for rapid testing solutions in the food sector while ensuring compliance with stringent European regulations on food safety. The technology potentially could be extended to broad industrial applications in healthcare and environmental monitoring.
The growing complexity of distribution centres and yards, combined with demands for efficiency, safety, and sustainability, and ongoing driver shortages, make automated and teleoperated vehicles increasingly attractive within the logistics sector. However, involved costs of these machines, mixed traffic flows and interactions with personnel present challenges in risk management, acceptance, and regulations. TITAN (Testing and Integration of Teleoperated and Automated vehicles for Next-gen yard logistics) aims to advance yard automation from Technology Readiness Level (TRL) 5/6 to 7/8 by demonstrating and testing teleoperation, automated docking, and connectivity solutions in real operational environments. The core objective is to bridge the gap between isolated pilot results and scalable commercial adoption. By integrating teleoperated and automated vehicles into live logistics settings, the consortium seeks to unlock improvements in throughput, reduce labour strain, and enhance overall sustainability. Coordinated by HAN, the consortium aligns industrial and academic expertise to overcome hurdles in deploying Cooperative Automated Transport (CAT) at logistics yards. The project also emphasizes collaboration between research institutes (HAN, Fontys) and industrial partners (V-Tron, MST, Verhagen-Leiden, Jumbo Groenewegen, KPN, DPD, DAF, Werken-aan-Verbinding), ensuring that both practical needs and innovative research remain aligned. Building on insights from previous projects (5G-Blueprint, SAVED, CAT4Yards, and CEYAS), TITAN adopts a multi-phase research and development approach. Through iterative testing at practical end users like DPD, the project will collect data to measure performance, safety and social impacts. Parallelly, digital twin simulations will replicate yard scenarios, allowing risk-free exploration of edge cases and operational strategies. TITAN’s approach integrates technical, operational, and social aspects, providing guidelines for safe, efficient, and accepted CAT deployment. By elevating TRL 6 technologies to TRL 7/8, the project lays the groundwork for scaling automation in logistics, ensuring future readiness and global competitiveness for Europe.