Corrigendum to original article: Elwin R. Savelsbergh, Gjalt T. Prins, Charlotte Rietbergen, Sabine Fechner, Bram E. Vaessen, Jael M. Draijer, Arthur Bakker Effects of innovative science and mathematics teaching on student attitudes and achievement: A meta-analytic study Educational Research Review, Volume 19, November 2016, Pages 158-172 https://doi.org/10.1016/j.edurev.2016.07.003
LINK
Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates whether and how out-of-school science activities contribute to the elicitation, emergence, and development of pupils’ science talent. The context of this thesis is the Northern Netherlands Science Network, an alliance of primary schools, out-of-school science facilities, the university of Groningen, and the Hanze University of Applied Sciences (www.wknn.nl). Interviews with the schools on their starting position showed that adequate communication between schools and out-of-school facilities is necessary to coordinate the participants’ educational goals. Secondly, the elicitation and expression of science talent was studied in the micro-interactions between pupils and their educator (classroom teacher or facility instructor). To do so, a multivariate coding scheme was developed to measure Pedagogical Content Knowledge expressed in real-time interaction (EPCK). The interaction shows a variable pattern over time. Sometimes episodes of high-level EPCK — so-called talent moments — emerge, in which talented pupil behavior in the form of pupils’ conceptual understanding, and talent elicitation by the educator in the form of open teaching focused on conceptual understanding, determine one another. These talent moments only occur in activities that were prepared in the classroom and with educators who were trained to evoke conceptual understanding. Under these conditions, out of school science activities can contribute to the elicitation and development of science talent in primary school pupils.AB - Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates whether and how out-of-school science activities contribute to the elicitation, emergence, and development of pupils’ science talent. The context of this thesis is the Northern Netherlands Science Network, an alliance of primary schools, out-of-school science facilities, the university of Groningen, and the Hanze University of Applied Sciences (www.wknn.nl). Interviews with the schools on their starting position showed that adequate communication between schools and out-of-school facilities is necessary to coordinate the participants’ educational goals. Secondly, the elicitation and expression of science talent was studied in the micro-interactions between pupils and their educator (classroom teacher or facility instructor). To do so, a multivariate coding scheme was developed to measure Pedagogical Content Knowledge expressed in real-time interaction (EPCK). The interaction shows a variable pattern over time. Sometimes episodes of high-level EPCK — so-called talent moments — emerge, in which talented pupil behavior in the form of pupils’ conceptual understanding, and talent elicitation by the educator in the form of open teaching focused on conceptual understanding, determine one another. These talent moments only occur in activities that were prepared in the classroom and with educators who were trained to evoke conceptual understanding. Under these conditions, out of school science activities can contribute to the elicitation and development of science talent in primary school pupils.
LINK
In this study, a data feedback program to improve teachers’ science and technology (S&T) teaching skills was designed and tested. The aim was to understand whether and how the four design principles underlying this program stimulated the intended teacher support. We examined how teachers in different phases of their career applied and experienced the employed design principles’ key aspects. Eight in-service teachers and eight pre-service teachers attended the data feedback program and kept a logbook in the meantime. Group interviews were held afterwards. Findings show that applying the four employed design principles’ key aspects did support and stimulate in- and pre-service teachers in carrying out data feedback for improving their S&T teaching. However, some key aspects were not applied and/or experienced as intended by all attending teachers. The findings provide possible implications for the development and implementation of professional development programs to support in - and pre-service teachers’ S&T teaching using data feedback.
DOCUMENT
Whereas different aspects of teaching and learning in Higher Education are often discussed within an academic community, teaching the EU seems to receive less attention. Especially in recent years we testimony the decreasing interest to EU studies in universities, including some signs of disappearing from educational curricula. Even more sad is the state of teaching the EU in economic faculties and other disciplinary areas. Teaching the EU is not always considered as an important and necessary part of these curricula. At the same time, in the still remaining studies of the EU, mainly situated in studies of politics or international relations, there is a tendency, with a few exemptions, to stick to a rather traditional approach of teaching the EU that does not change for years, no matter what the developments in the world are. In this paper I plea for the change of the existent paradigm in teaching the EU. The new global realities, such as a developing climate crisis and EU green economic transition, war in Europe and changing global security landscape, (still) continuing migration crisis and growing poverty worldwide, radicalization of political systems and intensifying populism, require to change the way the EU subject has been taught in universities. The scholars teaching the EU subject have to rethink the existent answers to the main educational questions, such as what, why, how and who is being taught about the EU. I propose a different approach to teaching the EU that not only redesigns the existent teaching practices of the EU, but also makes the introduction of EU studies in other than political science or international relations curricula, such as economic, business, environmental or many other interdisciplinary studies, possible and indispensable.
DOCUMENT
The number of out-of-school science programs, which refers to science education at outside school environments, is gradually increasing. Although out-of-school programs are generally considered to be important for the development of pupils’ science knowledge and skills, more evidence concerning the learning effect of these programs is needed. In the present study, we explored whether different degrees of implementation of a connected in-school and out-of-school science program affect pupils’ cognitive science skills in relation to teachers’/instructors’ support. We used a multiple case study design with four cases comprising three different degrees of program implementation: optimal, intermediary and marginal. The cases comprised pupils of upper grade elementary school classes, their teachers, and the instructors of the out-of-school activity. The effect of the program was measured by coding pupils’ performance with a scale based on skill theory, and by coding teacher’s/instructor’s support with the Openness Scale. The data was gathered from microgenetic measurements over time, corresponding with an in-depth analysis of the process of change in naturalistic conditions. We found the highest learning effect in the optimal program implementation, which indicates that it is favorable to implement the complete program, and train teachers/instructors to use open teaching focused on conceptual understanding.
DOCUMENT
Education for sustainable development (ESD) presents challenges to secondary science teachers. Characteristic aspects such as action-oriented teaching, stance-taking, interdisciplinary problem solving, and emotional and value-oriented teaching cause tensions for teachers accustomed to traditional science teaching. To help future science teachers face these challenges, understanding how these tensions are rooted in teaching visions is crucial. In the context of teacher education, this study aims to explain pre-service science teachers’ visions on these tension inducing aspects of ESD. Through a qualitative analysis of interviews and written reflections of ten participants in a course on ESD, we document beliefs and experiences that underlie their visions. A belief that supports teaching ESD is that education should contribute to a sustainable future. Prevalent beliefs that cause tensions with ESD are that education should not impose values; that one’s subject matter knowledge is insufficient; and that the scientific knowledge is unreliable. Experiences from the course that influence these beliefs, are confrontations with visions of peers, pupils, and professionals; exposure to ESD teaching practices; and inquiry into a socio-scientific issue, all of which alleviated tensions. Findings help teacher educators understand pre-service science teachers’ visions and provide suggestions for activities that foster vision development.
MULTIFILE
The evolving landscape of science communication highlights a shift from traditional dissemination to participatory engagement. This study explores Dutch citizens’ perspectives on science communication, focusing on science capital, public engagement, and communication goals. Using a mixed-methods approach, it combines survey data (n = 376) with focus group (n = 66) insights. Findings show increasing public interest in participating in science, though barriers like knowledge gaps persist. Trust-building, engaging adolescents, and integrating science into society were identified as key goals. These insights support the development of the Netherlands’ National Centre of Expertise on Science and Society and provide guidance for inclusive, effective science communication practices.
LINK
In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the instructor-pupil system that is constructed in real-time interaction. When PCK is evident in real-time interaction, we define it as Expressed Pedagogical Content Knowledge (EPCK). The aim of this study is to empirically explore whether EPCK shows a systematic pattern of variation, and if so whether the pattern occurs in recurrent and temporary stable attractor states as predicted in the complex dynamic systems theory. This study concerned nine out-of-school activities in which pupils of upper primary school classes participated. A multivariate coding scheme was used to capture EPCK in real time. A principal component analysis of the time series of all the variables reduced the number of dimensions. A cluster revealed general descriptions of the dimensions across all cases. Cluster analyses of individual cases divided the time series into sequences, revealing High-, Low- and Non-EPCK states. High-EPCK attractor states emerged at particular moments during activities, rather than being present all the time. Such High-EPCK attractor states were only found in a few cases, namely those where the pupils were prepared for the visit and the instructors were trained.
LINK
This teaching toolkit for critical materials research is developed for educators in higher design and arts education. It comes out of a 2-year project funded by the NRO Comenius Teaching Fellowship program at the Amsterdam University of Applied Sciences. The project invited a group of design educators and/or researchers to develop ways to help bachelor students explore making practices that center ecosystems rather than human systems. With this toolkit, we share our tried and tested activities, which take bio-based design materials and their unique properties as a point of departure, and offer hands-on activities to critically engage in sustainable material research.
DOCUMENT
Biomimicry is an emerging discipline that seeks nature’s advice and brings diverse stakeholders together to create designs that emulate the way nature functions, not just the way it looks. The field itself is a multidisciplinary endeavor, yet biomimicry educators frequently work alone. Pedagogical methods based on trial and error may waste precious time. In this study, a set of four biomimicry experts from diverse disciplines and different areas around the globe collaborated to compare pedagogy and analyze student work to illuminate best principles for teaching students to translate biology into design solutions, a key step in the biomimicry design process. A total of 313 assignments created by 179 different students were evaluated. The results showed that the inclusion of art in the learning of science, namely the hand drawing of the biological mechanism can lead to higher quality of abstracted design principles. Stevens, L., Bidwell, D., Fehler, M., Singhal, A. (2022). The Art and Science of Biomimicry—Abstracting Design Principles from Nature. In: Rezaei, N. (eds) Transdisciplinarity. Integrated Science, vol 5. Springer, Cham. https://doi-org.ezproxy.hhs.nl/10.1007/978-3-030-94651-7_29
DOCUMENT