Over the past few decades, education systems, especially in higher education, have been redefined. Such reforms inevitably require reconsideration of operational notions and definitions of quality, along with a number of related concepts. This reconsideration aligns with the core of higher education reforms: improving efficacy and compatibility with emerging social demands while adapting to competitiveness and accountability trends. As primary players in the teaching and learning process, online tutors have a protagonistic role and, therefore, must be equipped with a suitable set of competencies and attributes in addition to content knowledge. This quantitative research aims to analyze the perceptions of 250 online tutors working in European higher education institutions, distributed in 5 knowledge areas: Business, Education, Humanities, Sciences and Health. This descriptive and exploratory nonexperimental study reveals the technological and pedagogical skills and competencies that online tutors consider fundamental for effective online teaching and proposes professional development actions to ensure quality online teaching.
Since it emerged in the early 2000's, intensive education about ‘how pain works’, widely known as pain neuroscience education or explaining pain, has evolved into a new educational approach, with new content and new strategies. The substantial differences from the original have led the PETAL collaboration to call the current iteration ‘Pain Science Education’. This review presents a brief historical context for Pain Science Education, the clinical trials, consumer perspective, and real-world clinical data that have pushed the field to update both content and method. We describe the key role of educational psychology in driving this change, the central role of constructivism, and the constructivist learning frameworks around which Pain Science Education is now planned and delivered. We integrate terminology and concepts from the learning frameworks currently being used across the PETAL collaboration in both research and practice—the Interactive, Constructive, Active, Passive framework, transformative learning theory, and dynamic model of conceptual change. We then discuss strategies that are being used to enhance learning within clinical encounters, which focus on the skill, will, and thrill of learning. Finally, we provide practical examples of these strategies so as to assist the reader to drive their own patient pain education offerings towards more effective learning. Perspective: Rapid progress in several fields and research groups has led to the emergence ‘Pain Science Education’. This PETAL review describes challenges that have spurred the field forward, the learning frameworks and educational strategies that are addressing those challenges, and some easy wins to implement and mistakes to avoid.
This dissertation aims to strengthen socioscientific issues (SSI) education by focusing on the resources available to students. SSI education is a type of science and citizenship education that supports students’ informed and critical engagement with social issues that have scientific or technological dimensions. This dissertation explores students’ SSI-related resources relevant to their engagement with SSI, such as their attitudes and social resources. The dissertation consists of four papers. The first is a position paper that introduces the concept of socioscientific capital and argues why it is important to pay attention to students’ resources in SSI-based teaching. The other three papers involve empirical, quantitative studies. Two questionnaires were developed that were used to investigate student differences regarding engagement with SSI: the Pupils’ Attitudes towards Socioscientific Issues (PASSI) questionnaire and the Use of Sources of Knowledge (USK) questionnaire. The final study is an exploration of the effects of SSI-based teaching on students’ attitudes toward SSI, considering socioscientific capital.
MULTIFILE
mechanism for fostering innovation competenceThis dissertation focuses on fostering students’ innovation competence in higher education. The research is aimed at developing instructional strategies based on theoretical design principles to aid teachers in higher education foster innovation competence in their classrooms and assess students’ innovation competence. The research was implemented within the existing curriculum of three Netherlands universities of applied sciences in which developing students’ innovation competence was the target learning goal. To aid innovation competence learning, an innovation competence teaching mechanism was developed following education design research steps. The research includes four independents sub-studies which used different research methods. This thesis shows that students’ innovation competence can be positively influenced by instruction. The findings of this study suggested that development of students’ innovation competence takes place through explicitly coordinated teaching and learning activities, design, assessment, and reflection. It was found that this innovation-supportive learning environment influenced the actual innovation competence of students and that the way of teaching (especially a better structured, balanced and more student-centred constructivist approach to teaching) had a positive influence on students’ development of innovation competence. This dissertation has shown that every student has the potential to be innovative, and that teachers can fulfil their role in recognizing the innovation potential of students by creating a teaching and learning environment that promotes and encourages innovation competence.
Advances in technology are opening up new learning opportunities, consequently having an impact on conventional teaching and learning concepts. The roles of teachers, students and universities are also being transformed worldwide. The Academy for Leisure & Events of BUas has always been part of the above quest.Therefore, it is crucial that teaching methods and learning experiences in higher education are dynamic and continuously incorporate innovative approaches as well as integrate new technologies. After all, it is essential to be prepared for the way students learn nowadays and for the future demand coming.It is now more important than ever, especially considering the challenging coronavirus times we are in, for Breda University of Applied Sciences – as a partner of this project – to actively contribute to strengthening staff capacities in innovative teaching and learning methods and digital skills. For instance by offering training courses in a blended model, combining face-to-face teacher training with MOOCs and e-learning.As designing meaningful experiences has always been at the heart of the mission and work ofthe Academy for Leisure & Events, this project builds upon further extension of networks in teaching and learning innovation in national and international higher education contexts.Partners:FH Joanneum University of Applied Sciences, Universidad Carlos III de Madrid, Universidad de Lima, Universidad Catolica San Pablo, Universidad de Piura, Universidad Austral de Chile, Universidad de Santiago de Chile, Universidad Vina del Mar
KnowledgeFlows in Marine Spatial Planning - Sharing Innovation in Higher Education(KnowledgeFlows) aims at further enforcing the European higher education community to meet the growing demands for knowledge, skills and innovation within the still emerging field of marine or maritime spatial planning (MSP).Marine Spatial Planning (MSP) is an emerging governmental approach towards a more effective use of the sea. MSP is of great interest in Europe and can be considered a societal process to balance conflicting interests of maritime stakeholders and the marine environment. Many different activities take place at sea, ranging from shipping, fisheries, to offshore wind energy activities. Simultaneously, new and evolving policies focus on strategies to integrate different marine demands in space and resources. MSP is now legally binding in the EU and is much needed approach to manage and organize the use of the sea, while also protecting the environment.KnowledgeFlows will contribute to the development of new innovative approaches to higher education and training on MSP by means of problem-based learning schemes, transdisciplinary collaboration, and advanced e-learning concepts. KnowledgeFlows builds on results from former project outputs (Erasmus+ Strategic Partnership for Marine Spatial Planning SP-MSP), such as the online learning platform MSP Education Arena (https://www.sp-msp.uol.de).The strategic partnership consists of a transnational network of experts both in research and in practice based in the north Atlantic, Baltic Sea and North Sea Regions including Aalborg University (DK, lead partner), The University of Oldenburg (D), the University of Liverpool (U.K.), the University of Nantes (F), the Leibniz Institute for Baltic Sea Research (D), the Breda University of Applied Sciences (NL), University of Ulster (U.K.), and the Finnish Environment Institute (FI). Gothenburg University, also being a higher education organisation, will be associated partner.Furthermore, three international organisations, the Marine Spatial Planning Research Network, the Baltic inter-governmental VASAB and the pan-Nordic Nordregio will be involved in the partnership as associated organisations deeply rooted in the MSP community of practice.The further improvement of curricula, exchange of knowledge and experts, and transparency and recognition of learning outcomes to reach higher qualifications in MSP are key components of KnowledgeFlows. A mutual learning environment for MSP higher education will enable problem-driven innovation among students and their educators from research and governance also involving stakeholders. Related activities on intellectual outputs, multiplier events and lecturing will be carried out by all participating organisations.The intellectual outputs are related to three major contributions to the European higher education landscape:1) an advanced level international topical MSP course (Step-up MSP)2) digital learning facilities and tools (MSP Education Arena)3) designing problem-based learning in MSP (MSP directory)The advanced level inter-institutional topical MSP course will include different teaching and training activities within a problem-based learning environment. Digital learning facilities enabling communication and training will include a further enrichment of the MSP Education Arena platform for students, practitioners and lecturers for including modules forcollaborate learning activities, documentation and dissemination, mobilisation/recruitment, thesis opportunities, placements/internships. Designing problem-based learning in MSP will include topics as; the design of didactics and methods; guidance for lecturers, supervisors and students; evaluation and quality assurance; assessment.Five multiplier events back to back or as part of conferences within the MSP community will be organised to mainstream the outputs and innovative MSP didactics among other universities and institutions.Different teaching and training activities feeds into the intellectual output activities, which will include serious gaming sessions (MSP Challenge (http://www.mspchallenge.info/) and others), workshops, excursions, courses/classes as well as a conference with a specific focus on facilitating the exchange of innovative ideas and approaches among students at bachelor´s, master´s and doctoral level and the MSP community of practice.Project management meetings (twice a year) will assure coherence in project planning and implementation. As the core focus of the strategic partnership is on collaboration, mutual learning, and innovation among educators, students, and practitioners in order to meet actual and future needs regarding knowledge exchange and training within the MSP community, the project will be designed to have long lasting effects.Results