How can we make Inquiry-Based Science and Mathematics Education (IBSME) durable? …. by incorporating it in the pre-service programs for elementary teachers! With pre-service students the training can be much more intensive than with inservice teachers. To have an impact in the classroom the minimum contact time in IBSME in-service and coaching has to be more than 90 hours (Supovitz & Turner, 2000). That number is hard to achieve in in-service but it is quite possible in preservice teacher education. From 9 – 11 January 2013 the Hogeschool van Amsterdam (HvA) hosted a field-visit sponsored by the EU Fibonacci project with a focus on pre-service teacher education. HvA developed two programs to strengthen IBSME in pre-service. One is an elective minor (30 ECTS) Science and Technology Education in the regularelementary teacher education program. The other is a pre-service program for academically talented students jointly developed by the University of Amsterdam and the Hogeschool of Amsterdam with inquiry as a major emphasis. The two programs are described in chapters 1 & 3 in this booklet. If you are still wondering what IBSE is, then read chapter 2 of Ana Blagotinsek of the University of Slovenia. She describes a neat example of an IBSE process with students in elementary teacher education. How do you start with a real worldquestion and initially little knowledge, and how do you investigate the question and eventually generate the knowledge needed to answer it? During the field-visit each participant presented one particularly successful approach in teacher training, for example, training teachers by ‘model teaching’ activities with these teachers’ own pupils. This method was used in different ways by 4 participants in different countries. They describe this in chapters 4 – 7. In chapter 8 colleague Frans Van Mulken describes the development of a lessonseries on graphs, rate of change, and speed using inquiry strategies inspired by the late mathematician and mathematics educator Hans Freudenthal. He also describes how pre-service students could be trained to teach the lesson series as inquiry. Simultaneously with this booklet, a Dutch booklet is published with overlapping contents but focused more on the Dutch context.
Digitalization enables public organizations to personalize their services, tuning them to the specific situation, abilities, and preferences of the citizens. At the same time, digital services can be experienced as being less personal than face-to-face contact by citizens. The large existing volume of academic literature on personalization mainly represents the service provider perspective. In contrast, in this paper we investigate what makes citizens experience a service as personal. The result are eight dimensions that capture the full range of individual experiences and expectations that citizens expressed in focus groups. These dimensions can serve as a framework for public sector organizations to explore the expectations of citizens of their own services and identify the areas in which they can improve the personal experiences they offer.
MULTIFILE
This article seeks to contribute to the literature on circular business model innovation in fashion retail. Our research question is which ‘model’—or combination of models—would be ideal as a business case crafting multiple value creation in small fashion retail. We focus on a qualitative, single in-depth case study—pop-up store KLEER—that we operated for a duration of three months in the Autumn of 2020. The shop served as a ‘testlab’ for action research to experiment with different business models around buying, swapping, and borrowing second-hand clothing. Adopting the Business Model Template (BMT) as a conceptual lens, we undertook a sensory ethnography which led to disclose three key strategies for circular business model innovation in fashion retail: Fashion-as-a-Service (F-a-a-S) instead of Product-as-a-Service (P-a-a-S) (1), Place-based value proposition (2) and Community as co-creator (3). Drawing on these findings, we reflect on ethnography in the context of a real pop-up store as methodological approach for business model experimentation. As a practical implication, we propose a tailor-made BMT for sustainable SME fashion retailers. Poldner K, Overdiek A, Evangelista A. Fashion-as-a-Service: Circular Business Model Innovation in Retail. Sustainability. 2022; 14(20):13273. https://doi.org/10.3390/su142013273
The objective of DIGIREAL-XL is to build a Research, Development & Innovation (RD&I) Center (SPRONG GROUP, level 4) on Digital Realities (DR) for Societal-Economic Impact. DR are intelligent, interactive, and immersive digital environments that seamlessly integrate Data, Artificial Intelligence/Machine Learning, Modelling-Simulation, and Visualization by using Game and Media Technologies (Game platforms/VR/AR/MR). Examples of these DR disruptive innovations can be seen in many domains, such as in the entertainment and service industries (Digital Humans); in the entertainment, leisure, learning, and culture domain (Virtual Museums and Music festivals) and within the decision making and spatial planning domain (Digital Twins). There are many well-recognized innovations in each of the enabling technologies (Data, AI,V/AR). However, DIGIREAL-XL goes beyond these disconnected state-of-the-art developments and technologies in its focus on DR as an integrated socio-technical concept. This requires pre-commercial, interdisciplinary RD&I, in cross-sectoral and inter-organizational networks. There is a need for integrating theories, methodologies, smart tools, and cross-disciplinary field labs for the effective and efficient design and production of DR. In doing so, DIGIREAL-XL addresses the challenges formulated under the KIA-Enabling Technologies / Key Methodologies for sectoral and societal transformation. BUas (lead partner) and FONTYS built a SPRONG group level 4 based on four pillars: RD&I-Program, Field Labs, Lab-Infrastructure, and Organizational Excellence Program. This provides a solid foundation to initiate and execute challenging, externally funded RD&I projects with partners in SPRONG stage one ('21-'25) and beyond (until' 29). DIGIREAL-XL is organized in a coherent set of Work Packages with clear objectives, tasks, deliverables, and milestones. The SPRONG group is well-positioned within the emerging MINDLABS Interactive Technologies eco-system and strengthens the regional (North-Brabant) digitalization agenda. Field labs on DR work with support and co-funding by many network organizations such as Digishape and Chronosphere and public, private, and societal organizations.
The objective of DIGIREAL-XL is to build a Research, Development & Innovation (RD&I) Center (SPRONG GROUP, level 4) onDigital Realities (DR) for Societal-Economic Impact. DR are intelligent, interactive, and immersive digital environments thatseamlessly integrate Data, Artificial Intelligence/Machine Learning, Modelling-Simulation, and Visualization by using Gameand Media Technologies (Game platforms/VR/AR/MR). Examples of these DR disruptive innovations can be seen in manydomains, such as in the entertainment and service industries (Digital Humans); in the entertainment, leisure, learning, andculture domain (Virtual Museums and Music festivals) and within the decision making and spatial planning domain (DigitalTwins). There are many well-recognized innovations in each of the enabling technologies (Data, AI,V/AR). However, DIGIREAL-XL goes beyond these disconnected state-of-the-art developments and technologies in its focus on DR as an integrated socio-technical concept. This requires pre-commercial, interdisciplinary RD&I, in cross-sectoral andinter-organizational networks. There is a need for integrating theories, methodologies, smart tools, and cross-disciplinaryfield labs for the effective and efficient design and production of DR. In doing so, DIGIREAL-XL addresses the challengesformulated under the KIA-Enabling Technologies / Key Methodologies for sectoral and societal transformation. BUas (lead partner) and FONTYS built a SPRONG group level 4 based on four pillars: RD&I-Program, Field Labs, Lab-Infrastructure, and Organizational Excellence Program. This provides a solid foundation to initiate and execute challenging, externally funded RD&I projects with partners in SPRONG stage one ('21-'25) and beyond (until' 29). DIGIREAL-XL is organized in a coherent set of Work Packages with clear objectives, tasks, deliverables, and milestones. The SPRONG group is well-positioned within the emerging MINDLABS Interactive Technologies eco-system and strengthens the regional (North-Brabant) digitalization agenda. Field labs on DR work with support and co-funding by many network organizations such as Digishape and Chronosphere and public, private, and societal organizations
The research, supported by our partners, sets out to understand the drivers and barriers to sustainable logistics in port operations using a case study of drone package delivery at Rotterdam Port. Beyond the technical challenges of drone technology as an upcoming technology, it needs to be clarified how drones can operate within a port ecosystem and how they could contribute to sustainable logistics. KRVE (boatmen association), supported by other stakeholders of Rotterdam port, approached our school to conduct exploratory research. Rotterdam Port is the busiest port in Europe in terms of container volume. Thirty thousand vessels enter the port yearly, all needing various services, including deliveries. Around 120 packages/day are delivered to ships/offices onshore using small boats, cars, or trucks. Deliveries can take hours, although the distance to the receiver is close via the air. Around 80% of the packages are up to 20kg, with a maximum of 50kg. Typical content includes documents, spare parts, and samples for chemical analysis. Delivery of packages using drones has advantages compared with traditional transport methods: 1. It can save time, which is critical to port operators and ship owners trying to reduce mooring costs. 2. It can increase logistic efficiency by streamlining operations. 3. It can reduce carbon emissions by limiting the use of diesel engines, boats, cars, and trucks. 4. It can reduce potential accidents involving people in dangerous environments. The research will highlight whether drones can create value (economic, environmental, social) for logistics in port operations. The research output links to key national logistic agenda topics such as a circular economy with the development of innovative logistic ecosystems, energy transition with the reduction of carbon emissions, societal earning potential where new technology can stimulate the economy, digitalization, key enabling technology for lean operations, and opportunities for innovative business models.