With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public charging infrastructure and are looking for efficient roll-out strategies. Municipalities generally reserve the parking spots next to charging stations to ensure their availability. Underutilization of these charging stations leads to increased parking pressure, especially during peak hours. The city of The Hague has therefore implemented daytime reservation of parking spots next to charging stations. These parking spots are exclusively available between 10:00 and 19:00 for electric vehicles and are accessible for other vehicles beyond these times. This paper uses a large dataset with information on nearly 40.000 charging sessions to analyze the implementation of the abovementioned scheme. An unique natural experiment was created in which charging stations within areas of similar parking pressure did or did not have this scheme implemented. Results show that implemented daytime charging 10-19 can restrict EV owners in using the charging station at times when they need it. An extension of daytime charging to 10:00-22:00 proves to reduce the hurdle for EV drivers as only 3% of charging sessions take place beyond this time. The policy still has the potential to relieve parking pressure. The paper contributes to the knowledge of innovative measures to stimulate the optimized rollout and usage of charging infrastructure.
DOCUMENT
As the Dutch electric vehicle (EV) fleet continues to expand, so will the amount of charging sessions increase. This expanding demand for energy will add on to the already existing strain on the grid, primarily during peak hours on workdays in the early morning and evening. This growing energy demand requires new methods to handle the charging of EVs, to distribute the available energy in the most effective way. Therefore, a large number of ‘smart charging’ initiatives have recently been developed, whereby the charging session of the EV is based on the conditions of the energy grid. However, the term smart charging is used for a variety of smart charging initiatives, often involving different optimization strategies and charging processes. For most practitioners, as well as academics, it is hard to distinguish the large range of smart charging initiatives initiated in recent years, how they differentiate from each other and how they contribute to a smarter charging infrastructure. This paper has the objective to provide an overview of smart charging initiatives in the Netherlands and develop a categorization of smart charging initiatives regarding objectives, proposed measures and intended contributions. We will do so by looking at initiatives that focus on smart charging at a household level, investigating the smart charging possibilities for EV owners who either make use of a private or (semi-)public charging point. The different smart charging initiatives will be analyzed and explicated in combination with a literature study, focusing on the different optimization strategies and requirements to smart charge an electric vehicle.
DOCUMENT
Developers of charging infrastructure, be it public or private parties, are highly dependent on accurate utilization data in order to make informed decisions where and when to expand charging points. The Amsterdam The Amsterdam University of Applied Sciences in close cooperation with the municipalities of Amsterdam, Rotterdam, The Hague, Utrecht and the metropolitan region of Amsterdam developed both the back- and front-end of a decision support tool. This paper describes the design of the decision support tool and its DataWareHouse architecture. The back-end is based on a monthly update of charging data with Charge point Detail Records and Meter Values enriched with location specific data. The design of the front-end is based on Key Performance Indicators used in the decision process for charging infrastructure roll-out. Implementing this design and DataWareHouse architecture allows all kinds of EV related companies and cities to start monitoring their charging infrastructure. It provides an overview of how the most important KPIs are being monitored and represented in the decision support tool based on regular interviews and decision processes followed by four major cities and a metropolitan region in the Netherlands.
DOCUMENT