B4B is a multi-year, multi-stakeholder project focused on developing methods to harness big data from smart meters, building management systems and the Internet of Things devices, to reduce energy consumption, increase comfort, respond flexibly to user behaviour and local energy supply and demand, and save on installation maintenance costs. This will be done through the development of faster and more efficient Machine Learning and Artificial Intelligence models and algorithms. The project is geared to existing utility buildings such as commercial and institutional buildings.
To achieve the “well below 2 degrees” targets, a new ecosystem needs to be defined where citizens become more active, co-managing with relevant stakeholders, the government, and third parties. This means moving from the traditional concept of citizens-as-consumers towards energy citizenship. Positive Energy Districts (PEDs) will be the test-bed area where this transformation will take place through social, technological, and governance innovation. This paper focuses on benefits and barriers towards energy citizenships and gathers a diverse set of experiences for the definition of PEDs and Local Energy Markets from the Horizon2020 Smart Cities and Communities projects: Making City, Pocityf, and Atelier.
This report is intended to collect, present, and evaluate the various solutions applied in individual operational pilots for their (upscaling and transnational transfer) potential, in terms of opportunities and barriers, over the short and long(er)-term. This is done by identifying the main characteristics of the solutions and sites and the relevant influencing factors at different local (dimension) contexts.The analysis provides insights in barriers but also opportunities and conditions for success across four main dimensions that make up the local context landscape. We consider two main roll-out scenarios:1. Upscaling within the boundaries of the country where the operational pilot (OP) took place2. Transnational Transfer relates to the potential for transferring a (V4)ES solution to any of the other three (project) countriesThere are several aspects within the four main dimensions that are cross-cutting for all four countries, either because EU legislation lies at its roots, or because market conditions are fairly similar for certain influencing factors in those dimension.Ultimately, both Smart Charging and V2X market are still in their relevant infancies. The solutions applied in various SEEV4-City pilots are relatively straightforward and simple in ‘smartness’. This helps the potential for adoption but may not always be the optimal solution yet. The Peak shaving or load/demand shifting solutions are viable options to reduce costs for different stakeholders in the (electricity) supply chain. The market is likely to mature and become much smarter in coming 5 – 10 years. This also includes the evolvement (or spin-offs) of the solutions applied in SEEV4-_City as well. At least in the coming (approximately) 5 years Smart Charging appears to have the better financial business case and potential for large scale roll-out with less (impactful) bottlenecks, but looking at longer term V2X holds its potential to play a significant role in the energy transition.A common denominator as primary barriers relates to existing regulation, standards readiness and limited market availability of either hardware or service offerings.
In the road transportation sector, CO2 emission target is set to reduce by at least 45% by 2030 as per the European Green Deal. Heavy Duty Vehicles contribute almost quarter of greenhouse gas emissions from road transport in Europe and drive majorly on fossil fuels. New emission restrictions creates a need for transition towards reduced emission targets. Also, increasing number of emission free zones within Europe, give rise to the need of hybridization within the truck and trailer community. Currently, in majority of the cases the trailer units do not possess any kind of drivetrain to support the truck. Trailers carry high loads, such that while accelerating, high power is needed. On the other hand, while braking the kinetic energy is lost, which otherwise could be recaptured. Thus, having a trailer with electric powertrain can support the truck during traction and can charge the battery during braking, helping in reducing the emissions and fuel consumption. Using the King-pin, the amount of support required by trailer can be determined, making it an independent trailer, thus requiring no modification on the truck. Given the heavy-duty environment in which the King-pin operates, the measurement design around it should be robust, compact and measure forces within certain accuracy level. Moreover, modification done to the King-pin is not apricated. These are also the challenges faced by V-Tron, a leading company in the field of services in mobility domain. The goal of this project is to design a smart King-pin, which is robust, compact and provides force component measurement within certain accuracy, to the independent e-trailer, without taking input from truck, and investigate the energy management system of the independent e-trailer to explore the charging options. As a result, this can help reduce the emissions and fuel consumption.
Door COVID-19 crisis zijn er extra uitdagingen om de verdere doorontwikkeling van het praktijkgerichte onderzoek en de onderliggende infrastructuur en professionalisering kwalitatief en kwantitatief te realiseren. De Hogeschool van Arnhem en Nijmegen (HAN) zet de IMPULS 2020 middelen in om de rol van het praktijkgericht onderzoek hierin te bestendigen en versterken. Het betreft een academie overstijgende aanvraag. Het beschikbare budget vanuit de regeling bedraagt 550.000 euro en zal in 2021 via twee lijnen worden ingezet: 1. Netwerk- en visievorming Dit richt zich op de versterking van de strategische netwerkvorming en samenhang overstijgend aan de zwaartepunten als focus gebieden voor de samenwerking onderwijs, onderzoek en werkveld (deels is hier aandacht voor de ontwikkeling en samenwerking bij regelingen als SPRONG of MMIP). Dit moet leiden tot het ontwikkelen van een meerjarige roadmap SLIM, SCHOON & SOCIAAL (S3). De regie ligt bij dit deel bij het zwaartepunt management. (Sustainable Energy & Environment (SEE), Smart Region en Health). 2. Professionalisering onderzoeksondersteuning Dit gedeelte betreft het vervolg op het project professionalisering onderzoeksondersteuning en richt zich (in lijn met het nationale project DCC) op de doorontwikkeling van: datastewardship, FAIR data & open access, ICT kennisinfrastructuur en communicatie rondom onderzoek en ondersteuning, verdere ontwikkeling van een Open Science Platform en voorbereiding op een HAN Open Access Fonds. Dit deel zal vanuit Services Onderwijs, Onderzoek en Kwaliteitszorg gecoördineerd worden. Middels deze inzet geeft de HAN een extra stimulans aan de strategische samenwerking en de verdere ontwikkeling van een consistente en herkenbare onderzoeksprogrammering en -ondersteuning.