The objective of this book ‘An introduction to Smart Dairy Farming’ is to provide insight in the development of the Smart Dairy Farming (SDF) concept and advise as to how to apply this knowledge in the field of activities of students from universities of applied science. The information in this book includes background information and comprehensive insight in the concept of SDF.
MULTIFILE
Uit voorwoord Anton Franken, lid CvB `Smart Sustainable Cities is een platform voor het bedrijfsleven, kennisinstellingen en Hogeschool Utrecht waar gezamenlijk vernieuwende producten en diensten worden ontwikkeld die de realisatie van slimme, duurzame en gezonde steden dichterbij brengt. Startende en ervaren professionals hebben hiermee de mogelijkheid om via het onderwijs of via bij- en nascholing de nieuwste toepasbare kennis en inzichten op dit gebied op te doen. Tevens verricht het platform onderzoek. In projecten werken studenten, bedrijven, docenten en onderzoekers samen om nieuwe kennis en inzichten tot toepassing te brengen. Drie inhoudelijke thema’s staan centraal: ‘Stedelijke gebieden energieneutraal’, ‘Gezonde gebieden gezond gebouwd’ en ‘Duurzaam gedrag: mens en organisatie’ .`
We studied 12 smart city projects in Amsterdam, and –among other things- analysed their upscaling potential and dynamics. Here are some of our findings:First, upscaling comes in various forms: rollout, expansion and replication. In roll-out, a technology or solution that was successfully tested and developed in the pilot project is commercialised/brought to the market (market roll-out), widely applied in an organisation (organisational roll-out), or rolled out across the city (city roll-out). Possibilities for rollout largely emerge from living-lab projects (such as Climate street and WeGo), where companies can test beta versions of new products/solutions. Expansion is the second type of upscaling. Here, the smart city pilot project is expanded by a) adding partners, b) extending the geographical area covered by the solution, or c) adding functionality. This type of upscaling applies to platform projects, for example smart cards for tourists, where the value of the solution grows with the number of participating organisations. Replication is the third and most problematic type of upscaling. Here, the solution that was developed in the pilot project is replicated elsewhere (another organisation, another part of the city, or another city). Replication can be done by the original pilot partnership but also by others, and the replication can be exact or by proxy. We found that the replication potential of projects is often limited because the project’s success is highly context-sensitive. Replication can also be complex because new contexts might often require the establishment of new partnerships. Possibilities for replication exist, though, at the level of working methods, specific technologies or tools, but variations among contexts should be taken into consideration. Second, upscaling should be considered from the start of the pilot project and not solely at the end. Ask the following questions: What kind of upscaling is envisioned? What parts of the project will have potential for upscaling, and what partners do we need to scale up the project as desired? Third, the scale-up stage is quite different from the pilot stage: it requires different people, competencies, organisational setups and funding mechanisms. Thus, pilot project must be well connected to the parent organisations, else it becomes a “sandbox” that will stay a sandbox. Finally, “scaling” is not a holy grail. There is nothing wrong when pilot projects fail, as long as the lessons are lessons learned for new projects, and shared with others. Cities should do more to facilitate learning between their smart city projects, to learn and innovate faster.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Project BAMBAM, BAby Motor development monitored By A Multisensor wearable, richt zich op het begin, namelijk bij de zorg voor kinderen van 0-2 jaar. In het bijzonder op het optimaliseren van de ontwikkeling van de motoriek wanneer dit niet vanzelf gaat. Kinderfysiotherapeuten begeleiden veel baby’s waarbij er zorgen zijn over de motorische ontwikkeling. Een goed ontwikkelde motoriek is de basis voor andere ontwikkelingsdomeinen,en een voorwaarde voor een fysiek actieve leefstijl op latere leeftijd. Het inzetten van technologie bij het analyseren van bewegingsproblemen bij het jonge kind kan een waardevolle aanvulling zijn voor de kinderfysiotherapeut, die nu eigen observaties gebruikt. Op dit moment is er nog geen geschikt systeem voor het observeren van de motorische ontwikkeling voor kinderfysiotherapeuten. Daarom werken we in project BAMBAM aan een meetinstrument voor het objectiveren van bewegingsgedrag van baby’s, dat verantwoord ingezet kan worden in de kinderfysiotherapeutische praktijk en interventiestudies. Uitgangspunt is een bestaande smartsuit, een ‘slimme' romper, met sensortechnologie en Artificiële Intelligentie die doorontwikkeld wordt in co creatie met kinderfysiotherapeuten, ouders en experts. Ook onderzoeken we hoe de uitkomsten van het systeem waarde toevoegen als beslissingsondersteuning voor de kinderfysiotherapeut. Hierbij richten we ons vooral op de bewegingsparameters die belangrijk zijn voor het kinderfysiotherapeutisch onderzoek en behandeling en hoe we die duidelijk kunnen weergeven. Het systeem moet valide en betrouwbare metingen verzorgen in de thuissituatie voor de kinderfysiotherapeut in praktijk en ziekenhuis. De impact van deze toepassing op ouders en kinderfysiotherapeuten is een belangrijk onderdeel bij het ontwikkelen van deze technologie, zodat het op een verantwoorde manier gebruikt kan worden. De gezondheidszorg vraagt om evidence-based diagnostiek en interventies. Met de schaarste van zorg, wordt het zorgvuldig signaleren van de baby’s die de zorg echt nodig hebben steeds belangrijker, net als de inzet van effectieve interventies. Technologie kan bijdragen aan toegankelijkheid en duurzame borging hiervan.
Met ingang van 2023 krijgen alle kinderen in het primair onderwijs minimaal twee uur per week bewegingsonderwijs door een vakleerkracht. Voor de vakleerkrachten bewegingsonderwijs betekent dit een aanzienlijke uitbreiding van het aantal lesuren. Echter zijn de werkomstandigheden niet altijd optimaal, zeker niet wat akoestiek betreft. Sportaccommodaties voldoen vaak niet aan de normen voor een goede akoestiek, waardoor de leraren aan hoge geluidsniveaus worden blootgesteld. In de praktijk komen er regelmatig klachten betreffende geluidsoverlast in sportaccommodaties. Blootstelling aan hoge geluidsniveaus kan op lange termijn voor onherstelbare gehoorproblemen zorgen. Daarnaast zijn er ook secundaire effecten en hebben veel vakleerkrachten stemproblemen, vermoeidheid en concentratieverlies als gevolg van de rumoerige werksituatie. Met dit onderzoek willen we een bijdrage leveren aan het realiseren van een gezonde werkomgeving voor vakleerkrachten bewegingsonderwijs in het primair onderwijs. Preventie van beroepsslechthorendheid begint met kennis over- en bewustzijn van de risico’s die (teveel) blootstelling aan geluid met zich mee kan brengen. In dit onderzoek gaan we daarom inventariseren wat de kwaliteit van het gehoor is, wat de geluidsniveaus zijn waaraan vakleerkrachten worden blootgesteld, wat de relatie is tussen de akoestische parameters van de sportaccommodatie en de geluidsniveaus tijdens de les, hoe de geluidsniveaus inzichtelijk gemaakt kunnen worden en wat de impact van geluid is op het welbevinden, de communicatie en de didactiek van vakleerkrachten. Daarbij wordt er ook een applicatie ontwikkeld die de geluidsniveaus inzichtelijk maakt. Tenslotte brengen we de opgedane kennis en inzichten samen in voorlichtingsmateriaal voor studenten en vakleerkrachten met als doel om een gezonde werkomgeving voor de vakleerkrachten bewegingsonderwijs te realiseren.