In this research, the experiences and behaviors of end-users in a smart grid project are explored. In PowerMatching City, the leading Dutch smart grid project, 40 households were equipped with various decentralized energy sources (PV and microCHP), hybrid heat pumps, smart appliances, smart meters and an in-home display. Stabilization and optimization of the network was realized by trading energy on the market. To reduce peak loads on the smart grid, several types of demand side management were tested. Households received feedback on their energy use either based on costs, or on the percentage of consumed energy that had been produced locally. Furthermore, devices could be controlled automatically, smartly or manually to optimize the energy use of the households. Results from quantitative and qualitative research showed that: (1) feedback on costs reduction is valued most; (2) end-users preferred to consume self-produced energy (this may even be the case when, from a cost or sustainability perspective, it is not the most efficient strategy to follow); (3) automatic and smart control are most popular, but manually controlling appliances is more rewarding; (4) experiences and behaviors of end-users depended on trust between community members, and on trust in both technology (ICT infrastructure and connected appliances) and the participating parties.
We studied 12 smart city projects in Amsterdam, and –among other things- analysed their upscaling potential and dynamics. Here are some of our findings:First, upscaling comes in various forms: rollout, expansion and replication. In roll-out, a technology or solution that was successfully tested and developed in the pilot project is commercialised/brought to the market (market roll-out), widely applied in an organisation (organisational roll-out), or rolled out across the city (city roll-out). Possibilities for rollout largely emerge from living-lab projects (such as Climate street and WeGo), where companies can test beta versions of new products/solutions. Expansion is the second type of upscaling. Here, the smart city pilot project is expanded by a) adding partners, b) extending the geographical area covered by the solution, or c) adding functionality. This type of upscaling applies to platform projects, for example smart cards for tourists, where the value of the solution grows with the number of participating organisations. Replication is the third and most problematic type of upscaling. Here, the solution that was developed in the pilot project is replicated elsewhere (another organisation, another part of the city, or another city). Replication can be done by the original pilot partnership but also by others, and the replication can be exact or by proxy. We found that the replication potential of projects is often limited because the project’s success is highly context-sensitive. Replication can also be complex because new contexts might often require the establishment of new partnerships. Possibilities for replication exist, though, at the level of working methods, specific technologies or tools, but variations among contexts should be taken into consideration. Second, upscaling should be considered from the start of the pilot project and not solely at the end. Ask the following questions: What kind of upscaling is envisioned? What parts of the project will have potential for upscaling, and what partners do we need to scale up the project as desired? Third, the scale-up stage is quite different from the pilot stage: it requires different people, competencies, organisational setups and funding mechanisms. Thus, pilot project must be well connected to the parent organisations, else it becomes a “sandbox” that will stay a sandbox. Finally, “scaling” is not a holy grail. There is nothing wrong when pilot projects fail, as long as the lessons are lessons learned for new projects, and shared with others. Cities should do more to facilitate learning between their smart city projects, to learn and innovate faster.
A smart charging profile was implemented on 39 public charging stations in Amsterdam on which the current level available for electric vehicle (EV) charging was limited during peak hours on the electricity grid (07:00-08:30 and 17:00-20:00) and was increased during the rest of the day. The impact of this profile was measured on three indicators: average charging power, amount of transferred energy and share of positively and negatively affected sessions. The results are distinguished for different categories of electric vehicles with different charging characteristics (number of phases and maximum current). The results depend heavily on this categorisation and are a realistic measurement of the impact of smart charging under real world conditions. The average charging power increased as a result of the new profile and a reduction in the amount of transferred energy was detected during the evening hours, causing outstanding demand which was solved at an accelerated rate after limitations were lifted. For the whole population, 4% of the sessions were positively affected (charged a larger volume of energy) and 5% were negatively affected. These numbers are dominated by the large share of plug-in hybrid electric vehicles (PHEVs) in Amsterdam which are technically not able to profit from the higher current levels. For new generation electric vehicles, 14% of the sessions were positively affected and the percentage of negatively affected sessions was 5%.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
De energietransitie van fossiele naar duurzame energie krijgt brede maatschappelijk aandacht. Er zijn projecten voor het plaatsen van zonnepanelen en windturbines. Dit betreft zowel nationale projecten (zoals windparken op de Noordzee en de discussies over waterstof) als kleinere lokale projecten in huizen in woonwijken en bedrijfsgebouwen op bedrijventerreinen. Netcongestie is een recente ontwikkeling, wat betekent dat het elektriciteitsnet niet meer genoeg transportcapaciteit heeft om afspraken te kunnen maken voor nieuwe aansluitingen. Netcongestie beperkt de uitbreiding en vestiging van nieuwe bedrijven in sterke mate. De opschaling van de installatie van duurzame bronnen zoals zon- en windenergie wordt er door onmogelijk. Dit leidt tot een sterke vermindering van de toekomstige economische activiteiten en brengt het halen van duurzame-energiedoelstellingen in gevaar. Op korte termijn is volledig fysieke versterking van het net onmogelijk door gebrek aan mankracht en trage vergunningsprocedures. Een tussentijdse oplossing is het optimaal benutten van de netcapaciteit door de werkelijke vraag en aanbod te meten en beter op elkaar af te stemmen. In deze aanvraag stellen wij een onderzoeksaanpak voor om op lokaal bedrijventerreinenniveau deze sturing, vanuit een nauwe samenwerking tussen de netbeheerder, de parkorganisatie en de lokale (MKB) bedrijven op een bedrijvenpark, vorm te geven. Dit verkennend onderzoek begint met het in kaart te brengen van lokale (energie-)behoeftes en oplossingsmogelijkheden op laagspanningsniveau. Dit gebeurt door de informatie van slimme meters en de laagspanningstrafo’s momentaan uit te lezen en met AI de te verwachtte belasting te bepalen. Als bekend is wat de lokale regelmogelijkheden zijn, kan er met de bedrijven worden nagegaan hoe het huidige laagspanningsnet beter kan worden benut voorafgaand aan grote netverzwaring. Wij inventariseren hoe de opties en de voordelen voor de ondernemers op een begrijpelijke manier kunnen worden gepresenteerd, bijvoorbeeld met behulp van een dashboard.
Project BAMBAM, BAby Motor development monitored By A Multisensor wearable, richt zich op het begin, namelijk bij de zorg voor kinderen van 0-2 jaar. In het bijzonder op het optimaliseren van de ontwikkeling van de motoriek wanneer dit niet vanzelf gaat. Kinderfysiotherapeuten begeleiden veel baby’s waarbij er zorgen zijn over de motorische ontwikkeling. Een goed ontwikkelde motoriek is de basis voor andere ontwikkelingsdomeinen,en een voorwaarde voor een fysiek actieve leefstijl op latere leeftijd. Het inzetten van technologie bij het analyseren van bewegingsproblemen bij het jonge kind kan een waardevolle aanvulling zijn voor de kinderfysiotherapeut, die nu eigen observaties gebruikt. Op dit moment is er nog geen geschikt systeem voor het observeren van de motorische ontwikkeling voor kinderfysiotherapeuten. Daarom werken we in project BAMBAM aan een meetinstrument voor het objectiveren van bewegingsgedrag van baby’s, dat verantwoord ingezet kan worden in de kinderfysiotherapeutische praktijk en interventiestudies. Uitgangspunt is een bestaande smartsuit, een ‘slimme' romper, met sensortechnologie en Artificiële Intelligentie die doorontwikkeld wordt in co creatie met kinderfysiotherapeuten, ouders en experts. Ook onderzoeken we hoe de uitkomsten van het systeem waarde toevoegen als beslissingsondersteuning voor de kinderfysiotherapeut. Hierbij richten we ons vooral op de bewegingsparameters die belangrijk zijn voor het kinderfysiotherapeutisch onderzoek en behandeling en hoe we die duidelijk kunnen weergeven. Het systeem moet valide en betrouwbare metingen verzorgen in de thuissituatie voor de kinderfysiotherapeut in praktijk en ziekenhuis. De impact van deze toepassing op ouders en kinderfysiotherapeuten is een belangrijk onderdeel bij het ontwikkelen van deze technologie, zodat het op een verantwoorde manier gebruikt kan worden. De gezondheidszorg vraagt om evidence-based diagnostiek en interventies. Met de schaarste van zorg, wordt het zorgvuldig signaleren van de baby’s die de zorg echt nodig hebben steeds belangrijker, net als de inzet van effectieve interventies. Technologie kan bijdragen aan toegankelijkheid en duurzame borging hiervan.