Technologie wordt door steden steeds vaker gebruikt om innovatieve beleidsoplossingen te ontwikkelen om de stedelijke omgeving leerbaar en veilig te houden (Yigitcanlar et.al, 2018; zie Allam & Newman, 2018). In de literatuur wordt naar een stad die technologie gebruikt, verwezen als een Smart City (Holland 2008; Kitchin, 2015; zie ook Meijer & Bolivar, 2016 voor uitgebreide conceptualisering van Smart City). Rotterdam gebruikt bijvoorbeeld gezichtsherkenning in het openbaar vervoer om onder meer zwartrijden tegen te gaan. De data die verzameld wordt, is niet alleen in bezit van de openbaar vervoersorganisatie. Maar is ook in handen van de ontwikkelaar van de gezichtsherkenning-software. Soms wordt de data ook gedeeld met de politie en gemeentelijke toezichthouders. Ook in Amsterdam speelt technologie een rol. De Johan Cruijff Arena investeert in technologische oplossingen om de veiligheid en de leefbaarheid in het gebied rondom het stadion op orde te houden. Hierbij werken zij samen met de gemeente Amsterdam, maar ook technologiebedrijven zoals Huawei en KPN. De bovenstaande voorbeelden wordt technologie ingezet om vraagstukken effectief en efficiënt aan te pakken. Dit creëert echter ook nieuwe uitdagingen. Er treden nieuwe partijen, zoals Huawei en KPN, toe tot het beleidsproces. Daarnaast wordt van publieke professionals verwacht dat zij de vaardigheden en kennis bezitten om digitaal beleid te ontwikkelen en uit te voeren.
De markt voor smart materials, een andere naam is dynamische materialen, groeit gestaag. Het Kenniscentrum Design en Technologie van Saxion helpt het midden- en kleinbedrijf met het toepassen van smart materials in producten. Saxion doet dit in het innovatieprogramma „Materialen in Ontwerp?, waarin wordt samengewerkt met de Verenigde Maakindustrie Oost, Industrial Design Centre, ontwerpbureau D 'Andrea en Evers en Syntens. Het innovatie-programma Materialen in Ontwerp staat onder leiding van de Saxion-lectoren Karin van Beurden, lector Product Design, en Ger Brinks, lector Smart Functional Materials en is gericht op het creëren van praktisch toepasbare kennis in door bedrijven aangedragen vragen en onderwerpen. Daartoe organiseert Saxion specifieke workshops en projecten, waarbij het experts, deskundigen en studenten inzet. Het innovatieprogramma wordt mogelijk gemaakt door gelden van RAAK SIA (Regionale Aandacht en Actie voor Kenniscirculatie).
MULTIFILE
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Nowadays, there is particular attention towards the additive manufacturing of medical devices and instruments. This is because of the unique capability of 3D printing technologies for designing and fabricating complex products like bone implants that can be highly customized for individual patients. NiTi shape memory alloys have gained significant attention in various medical applications due to their exceptional superelastic and shape memory properties, allowing them to recover their original shape after deformation. The integration of additive manufacturing technology has revolutionized the design possibilities for NiTi alloys, enabling the fabrication of intricately designed medical devices with precise geometries and tailored functionalities. The AM-SMART project is focused on exploring the suitability of NiTi architected structures for bone implants fabricated using laser powder bed fusion (LPBF) technology. This is because of the lower stiffness of NiTi alloys compared to Ti alloys, closely aligning with the stiffness of bone. Additionally, their unique functional performance enables them to dissipate energy and recover the original shape, presenting another advantage that makes them well-suited for bone implants. In this investigation, various NiTi-based architected structures will be developed, featuring diverse cellular designs, and their long-term thermo-mechanical performance will be thoroughly evaluated. The findings of this study underscore the significant potential of these structures for application as bone implants, showcasing their adaptability for use also beyond the medical sector.