Objectives: Promoting unstructured outside play is a promising vehicle to increase children’s physical activity (PA). This study investigates if factors of the social environment moderate the relationship between the perceived physical environment and outside play. Study design: 1875 parents from the KOALA Birth Cohort Study reported on their child’s outside play around age five years, and 1516 parents around age seven years. Linear mixed model analyses were performed to evaluate (moderating) relationships among factors of the social environment (parenting influences and social capital), the perceived physical environment, and outside play at age five and seven. Season was entered as a random factor in these analyses. Results: Accessibility of PA facilities, positive parental attitude towards PA and social capital were associated with more outside play, while parental concern and restriction of screen time were related with less outside play. We found two significant interactions; both involving parent perceived responsibility towards child PA participation. Conclusion: Although we found a limited number of interactions, this study demonstrated that the impact of the perceived physical environment may differ across levels of parent responsibility.
MULTIFILE
Op dinsdag 12 april jl. vond een online inspiratiesessie van IWP Healthy Workplace plaats met als thema: ‘Healing Environment; van zorgomgeving naar werkomgeving’. Deze inspiratie paper is een samenvatting van de gegeven presentatie en de discussie.
DOCUMENT
The world is undergoing multiple crises that require resilience to withstand them. The built environment can significantly enhance or weaken society’s (and individuals’) resilience. However, understanding of resilience in the built environment is scattered and manifold–whilst the design of buildings primarily focuses on the restoration of buildings’ physical characteristics, urban policies centre on the recovery of society. Scholars highlight the need for a holistic approach where different resilience concepts merge to improve the resilience of people and communities. For this, understanding the relationship between people and places is crucial. Thus, the aim of this paper is to deepen the understanding of the social resilience concept in relation to the built environment and how the built environment can enhance it. This is achieved through an extensive literature review, concept mapping and panel discussion. The built environment characteristics affecting individual and/or community resilience are identified, and a conceptual model is provided, attempting to visualize the relationship between the constructs. The paper’s novelty lies in its multidisciplinary approach and integration of various social science knowledge in the context of the built environment. Furthermore, it emphasizes the built environment’s role in supporting social resilience, which has been often overlooked previously.
DOCUMENT
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Developing and realizing an innovative concept for the Active Aging campus in two years, where students, teachers, companies, residents of surrounding Campus neighborhoods will be invited to do exercise, sports, play, meet and participate. This includes, on the one hand, providing input with regard to a mobility-friendly design from an infrastructural perspective and, on the other hand, organizing activities that contribute to Healthy Aeging of the Zernike site and the city of Groningen. It is not only about having an Active Aging campus with an iconic image, but also about the process. In the process of realization, students, teachers, researchers, companies and residents from surrounding districts will be explicitly involved. This includes hardware (physical environment / infrastructure), software (social environment) and orgware (interaction between the two).
Due to the existing pressure for a more rational use of the water, many public managers and industries have to re-think/adapt their processes towards a more circular approach. Such pressure is even more critical in the Rio Doce region, Minas Gerais, due to the large environmental accident occurred in 2015. Cenibra (pulp mill) is an example of such industries due to the fact that it is situated in the river basin and that it has a water demanding process. The current proposal is meant as an academic and engineering study to propose possible solutions to decrease the total water consumption of the mill and, thus, decrease the total stress on the Rio Doce basin. The work will be divided in three working packages, namely: (i) evaluation (modelling) of the mill process and water balance (ii) application and operation of a pilot scale wastewater treatment plant (iii) analysis of the impacts caused by the improvement of the process. The second work package will also be conducted (in parallel) with a lab scale setup in The Netherlands to allow fast adjustments and broaden evaluation of the setup/process performance. The actions will focus on reducing the mill total water consumption in 20%.
Lectorate, part of NHL Stenden Hogeschool