Presentation.
In the Dutch armed forces clothing sizes are determined using 3D body scans. To evaluate if the predicted size based on the scan analysis matches the best fit, 35 male soldiers fitted a combat jacket and combat pants. It was shown that the predicted jacket size was slightly too large. Therefore, an adjustment was proposed. The predicted and preferred pant size matched rather well. We further investigated discrepancies between predicted and preferred sizes using virtual fitting analysis. Colour maps showing the difference between garment and body circumference illustrated that some soldiers selected a garment size that was obviously too small or too large. In order to minimize the effect of personal preference and maximize standardize ease, we recommend to maintain the current size prediction (with minor corrections for jackets) and use virtual fitting selectively as a control measure.
Author supplied: In a production environment where different products are being made in parallel, the path planning for every product can be different. The model proposed in this paper is based on a production environment where the production machines are placed in a grid. A software entity, called product agent, is responsible for the manufacturing of a single product. The product agent will plan a path along the production machines needed for that specific product. In this paper, an optimization is proposed that will reduce the amount of transport between the production machines. The effect of two factors that influence the possibilities for reductions is shown in a simulation, using the proposed optimization scheme. These two factors are the redundancy of production steps in the grid and the
The main challenge addressed in FTMAAS (Freight Traffic Management As A Service) is the integration of logistics and traffic management information. Digitalization is progressing quickly in both areas, but operational connections and synergies are scarce. The mission of the FTMAAS Living Lab is to connect these two subsystems by developing, implementing and testing integrating software applications that benefit both worlds. The Living Lab focuses on the International Freight Corridor South (Rotterdam-Venlo) and manages 3 main running cases and 6 research subprojects. Research focuses on questions of value creation, analytics and optimization of both logistics and network level traffic management.
The main challenge addressed in FTMAAS (Freight Traffic Management As A Service) is the integration of logistics and traffic management information. Digitalization is progressing quickly in both areas, but operational connections and synergies are scarce. The mission of the FTMAAS Living Lab is to connect these two subsystems by developing, implementing and testing integrating software applications that benefit both worlds. The Living Lab focuses on the International Freight Corridor South (Rotterdam-Venlo) and manages 3 main running cases and 6 research subprojects. Research focuses on questions of value creation, analytics and optimization of both logistics and network level traffic management.