The concept of the Daily Urban System (DUS) has gained relevance over the past decades as the entity to examine and explain the functionality of the urban landscape. Daily Urban Systems are usually defined and measured by the strength of commuter or shopper flows between the nodes of the system. It is important to realize that these Daily Urban Systems are the accumulated pattern of individuals making frequent, recurring trips to other localities than their own. Understanding the microeconomic decisions behind these spatial interactions will help in assessing the functional and spatial structure of DUS. In this paper is explored how, based on Dutch empirical data, the individual household’s spatial interactions shape the daily urban system and how the destination of these interactions correlates with personal and spatial variables and motives for interaction. The results show that the occurrence of non-local spatial interactions can be explained by the size-based Christallerian hierarchy of the localities of residence, but that it is the regional population – or market potential – that explains and moderates the sorting of households and the intensity and direction of their spatial interactions in the DUS, matching agglomeration theory.
DOCUMENT
This report is the second in a series of three reports named Value Added Planning, consisting of three unique, but interconnected tools, namely the Green Credit Tool, the Workbench Method and Value Added Planning, These tools have been developed and/or tested in the context of the European INTERREG programme: VALUE (INTERREG IVB North West Europe - Valuing Attractive Landscapes in the Urban Economy), in which the municipality of Amersfoort is involved. Aim of this programme is to understand how green space in urban centres can become more competitive with other urban functions. In this context, the municipality of Amersfoort has introduced the interactive method named Workbench Spatial Quality (Werkbank Ruimtelijke Kwaliteit in Dutch) in their spatial design in several areas in their municipality. The Workbench Spatial Quality (to be referred to as Workbench) has been applied on two cases in Amersfoort: Park Randenbroek and Vathorst NW. In this report the Workbench as applied in Amersfoort is evaluated. Research was done on the basis of literature research, case-material and interviews performed with several experts. Furthermore, research was done by students at the Wageningen University and Research Centre (WUR). Part of the evaluation in this report makes use of a quick scan of 19 Dutch cases. The question addressed in this report is: 1.How was the Workbench Spatial Quality applied in Amersfoort? 2.Can the Workbench contribute to sustainable spatial planning?
MULTIFILE
Purpose: To establish age-related, normal limits of monocular and binocular spatial vision under photopic and mesopic conditions. Methods: Photopic and mesopic visual acuity (VA) and contrast thresholds (CTs) were measured with both positive and negative contrast optotypes under binocular and monocular viewing conditions using the Acuity-Plus (AP) test. The experiments were carried out on participants (age range from 10 to 86 years), who met pre-established, normal sight criteria. Mean and ± 2.5σ limits were calculated within each 5-year subgroup. A biologically meaningful model was then fitted to predict mean values and upper and lower threshold limits for VA and CT as a function of age. The best-fit model parameters describe normal aging of spatial vision for each of the 16 experimental conditions investigated. Results: Out of the 382 participants recruited for this study, 285 participants passed the selection criteria for normal aging. Log transforms were applied to ensure approximate normal distributions. Outliers were also removed for each of the 16 stimulus conditions investigated based on the ±2.5σ limit criterion. VA, CTs and the overall variability were found to be age-invariant up to ~50 years in the photopic condition. A lower, age-invariant limit of ~30 years was more appropriate for the mesopic range with a gradual, but accelerating increase in both mean thresholds and intersubject variability above this age. Binocular thresholds were smaller and much less variable when compared to the thresholds measured in either eye. Results with negative contrast optotypes were significantly better than the corresponding results measured with positive contrast (p < 0.004). Conclusions: This project has established the expected age limits of spatial vision for monocular and binocular viewing under photopic and high mesopic lighting with both positive and negative contrast optotypes using a single test, which can be implemented either in the clinic or in an occupational setting.
DOCUMENT
The key societal problem addressed by the EmPowerED consortium is the urgent need to accelerate and scale up the development of Positive Energy Districts (PEDs). Carbon neutral heating and cooling is a core element of the design of Positive Energy Districts (PEDS). However, many Dutch heat transition projects run behind schedule and are not compatible with this future vision of PEDs, making the heat transition a key factor in PED realization and upscaling. In this heat transition and the transition to PEDs, citizen engagement and support is a key societal factor and citizens need to be an integral part of the decision-making process on the realization of PEDs. Furthermore, technical, regulatory and financial uncertainties hamper the ability of decision makers to create PED system designs that have citizen support. Such system designs require a deep understanding of the relevant social, spatial, governance, legal, financial, and technical factors, and their interactions in PED system designs.
Management policy for protected species is currently often based on literature reviews and expert judgement, even though it requires tailor-made species knowledge on a local level. While wildlife management should preferably be evidence based, tailor-made field data is seldom used in current practices, because it is hardly available, difficult to collect and expensive. Recent development of digital technology is changing the field of wildlife management with “more, better, faster and cheaper” ways of data collection. Especially automated collection of field data with different types of sensors is promising, whereas miniaturization and low cost mass-production increase availability and use of these sensors. For collection of field data about predator-prey interactions, there is a need to develop wireless sensor networks that automatically identify different species in a community, while they record their spatially explicit data and their behaviour. Therefore, we will put together a consortium of partners that will develop a EU LIFE programme proposal, with the focus to develop a sensor network necessary to automatically monitor multiple species (i.e., species communities) for species conservation management. The consortium will consist of Van Hall Larenstein, Sovon Dutch Centre for Field Ornithology, the Dutch Mammal Society, Sensing Clues and DIKW intelligence. It will bring together a strong mix of expert knowledge on applied species conservation and wildlife management, ecological field research, wildlife intelligence, and handling and analysis of big data. This project matches the Top sector High-tech Systems & Materials, and revolves around 4 distinct phases: selection of potential consortium partners, exploration of the problem, working towards a common action perspective and writing a EU LIFE programme proposal. We will use knowledge co-creation techniques to explore the first three project phases.
Socio-economic pressures on coastal zones are on the rise worldwide, leaving increasingly less room for natural coastal change without affecting humans. The challenge is to find ways for social and natural systems to co-exist, co-develop and create synergies. The recent implementation of multi-functional, nature-based solutions (NBS) on the sandy Dutch coast seem to offer great potential in that respect. Surprisingly, the studies evaluating these innovative solutions paid little attention to how the social and natural systems interact in the NBS-modified coastal landscapes and if these interactions strengthen or weaken the primary functions of the NBS. It is not clear whether the objectives to improve coastal resilience and spatial quality will be met throughout the lifetime of the intervention. In the proposed project we will investigate the socio-bio-physical dynamics of anthropogenic sandy shores applying a Living Lab approach, documenting and analyzing interactions between evolving anthropogenic shores (Sand Motor and Hondsbossche Duinen, Fig.1) and people that use and manage these NBS-modified landscapes. Socio-bio-physical interactions will be investigated at various scales, and consequences for the long-term functionality of the NBS will be assessed, by coupling an agent-based social model and a cellular automata landscape model. By studying the behavior of the coupled system we aim to identify limits to, and optima in, multi-functionality of the NBS design, and will study how various stakeholders can influence the development of the NBS in desired directions with respect to primary NBS functions, including social and ecological goals. Together with consortium partners from public and private sectors we will co-create guidelines for management and maintenance of multifunctional NBS and design procedures and visualization tools for intervention design.