Now, that the European cities are overcoming the recent economic challenges, they accelerate the development of major housingschemes to accommodate their growing urban population. Amsterdam for instance, sets out to construct 50,000 new homes by 2025. Parallel to this, the City Council presented a new regeneration and urban optimisationprogram in 2017, to reinforce existingneighbourhoods with relatively weak socio-economic status. If these housing policies are to maximise on opportunities, they need to anticipate the 2030 Agenda for Sustainable Development, the Paris Climate Agreement, and local socio-environmental challenges, into a single cohesive, sustainable solution. Currently, literature indicates that large scale spatial developments, have a tendency to move away from social and ecological ambitions during the course of the planning process. Moreover, ambitions tend to be short term “fixes” where they could be striving for long-term systemic solutions. What is needed, are practice proven comprehensive development strategies tosecure pathways for inclusive and integrated development. Those strategies are spatial and programmatic governance arrangements. Employing a comparative analysis method, we follow and compare the redevelopment of three deprived boroughs across Amsterdam. In collaboration with communities, we are able to construct a “Design Thinking” approach for urban spatial development, using different types of arrangements. This is in reflection and collaboration with the municipality of Amsterdam and a wide variety of skilled experts. The arrangements are tested in practice, following a plan-do-check-act cycle. The research project takes an in-depth look at the Amsterdam case and presents the first set of arrangements for planning more cohesive, urban spatial development and the preliminary strategies we see emerging.
The realization of one’s musical ideas at the keyboard is dependent on the ability to transform sound into movement, a process called audiomotor transformation. Using fMRI, we investigated cerebral activations while classically‐trained improvising and non‐improvising musicians imagined playing along with recordings of familiar and unfamiliar music excerpts. We hypothesized that audiomotor transformation would be associated with the recruitment of dedicated cerebral networks, facilitating aurally‐cued performance. Results indicate that while all classically‐trained musicians engage a left‐hemisphere network involved in motor skill and action recognition, only improvising musicians additionally recruit a right dorsal frontoparietal network dedicated to spatially‐driven motor control. Mobilization of this network, which plays a crucial role in the real‐time transformation of imagined or perceived music into goal‐directed action, may be held responsible not only for the stronger activation of auditory cortex we observed in improvising musicians in response to the aural perception of music, but also for the superior ability to play ‘by ear’ which they demonstrated in a follow‐up study. The results of this study suggest that the practice of improvisation promotes the implicit acquisition of hierarchical music syntax which is then recruited in top‐down manner via the dorsal stream during music performance.