OBJECTIVE: To evaluate if using surface neuromuscular electrical stimulation (NMES) for paralyzed lower-limb muscles results in an increase in energy expenditure and if the number of activated muscles and duty cycle affect the potential increase.DESIGN: Cross-sectional study.RESULTS: Energy expenditure during all NMES protocols was significantly higher than the condition without NMES (1.2 ± 0.2 kcal/min), with the highest increase (+ 51%; +0.7 kcal/min, 95% CI: 0.3 - 1.2) for the protocol with more muscles activated and the duty cycle with a shorter rest period. A significant decrease in muscle contraction size during NMES was found with a longer stimulation time, more muscles activated or the duty cycle with a shorter rest period.CONCLUSION: Using NMES for paralyzed lower-limb muscles can significantly increase the energy expenditure compared to sitting without NMES with the highest increase for the protocol with more muscles activated and the duty cycle with a shorter rest period. Muscle fatigue occurred significantly with the more intense NMES protocols which might cause a lower energy expenditure in a longer protocol. Future studies should further optimize the NMES parameters and investigate the long-term effects of NMES on weight management in people with SCI.
Rationale: Obesity is a risk factor for type 2 diabetes (DM2), however not all obese people develop DM2. We explored differences in energy intake and expenditure between obese older adults with and without DM2. Methods: Baseline data from 2 lifestyle interventions with a total of 202 obese older adults were included in the analyses. Obesity was defined as BMI > 30.0, or >27.0 with waist circumference >88 (women) or >102 cm (men). DM2 was confirmed by use of diabetes medication. Subjects were between 55 and 85 years old and 45% was female. Energy intake (EI) was measured by 3-day food diary and physical activity level (PAL) by 3-day movement diary. Resting energy expenditure (REE) was measured using indirect calorimetry and total energy expenditure (TEE) was calculated as REE x PAL. Between group differences were analysed with independent samples T-tests. Results: The obese group with DM2 (n = 117) had more males (67.5% vs 37.6% p < 0.001) and similar BMI (33.3 vs 33.0 kg/m2) compared to the group without DM2 (n = 85). Analyses of males and females separately showed lower PAL in males with DM2 (vs without DM2; 1.37 vs 1.45, p = 0.015), without differences in EI (2055 vs 1953 kcal/d), REE (1970 vs 1929 kcal/d), and TEE (2699 vs 2830 kcal/d). In females with DM2, both PAL (1.38 vs 1.47, p = 0.014) and EI (1543 vs 1839 kcal/d, p = 0.008) were significantly lower, whereas REE (1592 vs 1598 kcal/d) and TEE (2220 vs 2318 kcal/d) did not differ significantly from obese females without DM2. Conclusion: In both males and females, obese older adults with type 2 diabetes showed similar resting and total energy expenditure but lower physical activity level compared to those without DM2. Females with DM2 showed lower energy intake. On average, subjects seem to have a negative energy balance, which is probably due to a combination of underreporting of intake and over-reporting of activity.
This study analyses the determinants of cycling expenditure by means of a Tobit regression analysis, based on a dataset of 5,157 cyclists. Using a heterodox economic framework, 23 different variables are combined into two commonly used variable groups (socio-demographics, sports intensity variables) and two rarely investigated variables groups (socio-economic cycling capital, psychographics). With all variables included in the Tobit regression, gender, trip duration, frequency, number of cycling variants practiced, visiting cycling websites, and practicing road-cycling or mountain bike are positive determinants of cycling expenditure. A negative association is found with competitive riding and cycling drop out. Marketeers of cycling services and cycling apparel should meet the cyclists need for identification instead of focusing solely on socio-demographic factors.
LINK
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.
Along with the rapidly growing number of disabled people participating in competitive sports, there is an increased need for (para)medical support in disability sports. Disabled athletes experience differences in body composition, metabolism, training load and habitual activity patterns compared with non-disabled athletes. Moreover, it has been suggested that the well-recognized athlete triad, and low energy availability and low bone mineral density in particular, is even a greater challenge in disabled athletes. Therefore, it is not surprising that sport nutritionists of disabled athletes have expressed an urgency for increased knowledge and insights on the nutritional demands of this group. This project aims to investigate energy expenditure, dietary intake, body composition and bone health of disabled athletes, ultimately leading to nutritional guidelines that promote health and optimal sports performance for this unique population. For this purpose, we will conduct a series of studies and implementation activities that are inter-related and build on the latest insights from sports practice, technology and science. Our international consortium is highly qualified to achieve this goal. It consists of knowledge institutes including world-leading experts in sport and nutrition research, complemented with practical insights from nutritionists working with disabled athletes and the involvement of athletes and teams through the Dutch and Norwegian Olympic committees. The international collaboration, which is a clear strength of this project, is not only focused on research, but also on the optimization of professional practice and educational activities. In this regard, the outcomes of this project will be directly available for practical use by the (para)medical staff working with disabled athletes, and will be extensively communicated to sport teams to ensure that the new insights are directly embedded into daily practice. The project outcomes will also be incorporated in educational activities for dietetics and sport and exercise students, thereby increasing knowledge of future practitioners.