Active antifungal packaging is a technological solution for reducing the postharvest losses of fruits and vegetables associated with phytopathogens. Anthracnose (Colletotrichum gloeosporioides) is the principal fungus that causes post-harvest avocado fruit decay. In this study, antifungal sachets filled with oregano oil-starch capsules were prepared, and their active effects were demonstrated on Hass avocado fruits. Oregano oil (31 % of carvacrol) was encapsulated with corn starch by spray drying. Tyvek sachets (4 × 4 cm) filled with 80 (T1) and 160 mg (T2) of oregano oil-starch capsules (99.35 ± 1.86 mg g − 1) were fabricated. The antifungal effects of the sachets were tested in vitro and in vivo using a humidity chamber (90–95 % relative humidity (RH)) on fruits inoculated with anthracnose. The results showed that T1 and T2 inhibited 75.21 ± 2.81 and 100 % in vitro growth of anthracnose at 25 °C for 12 days. Furthermore, Hass avocado fruits stored in a humidity chamber at 25 °C for 6 days showed that only T2 significantly (p < 0.05) reduced the area of lesion produced by artificial inoculation of Hass avocado fruits with anthracnose. On average, the lesion area in the Hass avocado fruits treated with T2 was 13.94 % smaller than that in the control fruit.
MULTIFILE
Microbacterium aurum strain B8.A was isolated from the sludge of a potato starch-processing factory on the basis of its ability to use granular starch as carbon- and energy source. Extracellular enzymes hydrolyzing granular starch were detected in the growth medium of M. aurum B8.A, while the type strain M. aurum DSMZ 8600 produced very little amylase activity, and hence was unable to degrade granular starch. The strain B8.A extracellular enzyme fraction degraded wheat, tapioca and potato starch at 37 °C, well below the gelatinization temperature of these starches. Starch granules of potato were hydrolyzed more slowly than of wheat and tapioca, probably due to structural differences and/or surface area effects. Partial hydrolysis of starch granules by extracellular enzymes of strain B8.A resulted in large holes of irregular sizes in case of wheat and tapioca and many smaller pores of relatively homogeneous size in case of potato. The strain B8.A extracellular amylolytic system produced mainly maltotriose and maltose from both granular and soluble starch substrates; also, larger maltooligosaccharides were formed after growth of strain B8.A in rich medium. Zymogram analysis confirmed that a different set of amylolytic enzymes was present depending on the growth conditions of M. aurum B8.A. Some of these enzymes could be partly purified by binding to starch granules.
DOCUMENT