In order to guarantee structural integrity of marine structures in an effective way, operators of these structures seek an affordable, simple and robust system for monitoring detected cracks. Such systems are not yet available and the authors took a challenge to research a possibility of developing such a system. The paper describes the initial research steps made. In the first place, this includes reviewing conventional and recent methods for sensing and monitoring fatigue cracks and discussing their applicability for marine structures. A special attention is given to the promising but still developing new sensing techniques. In the second place, wireless network systems are reviewed because they form an attractive component of the desired system. The authors conclude that it is feasible to develop the monitoring system for detected cracks in marine structures and elaborate on implications of availability of such a system on risk based inspections and structural health monitoring systems
DOCUMENT
This manual focuses on the initial phase of a (digital) publishing process. It offers methods to critically examine the narrative structures of content and explore alternative conceptions of a publication. By raising the question of how modular publishing can be used as a way to create, edit and structure content it tries to resist a monolithic story line, and embraces multiple perspectives.
DOCUMENT
Several studies show that logistics facilities have spread spatially from relatively concentrated clusters in the 1970s to geographically more decentralized patterns away from urban areas. The literature indicates that logistics costs are one of the major influences on changes in distribution structures, or locations and usage of logistics facilities. Quantitative modelling studies that aim to describe or predict these phenomena in relation to logistics costs are lacking, however. This is relevant to design more effective policies concerning spatial development, transport and infrastructure investments as well as for understanding environmental consequences of freight transport. The objective of this paper is to gain an understanding of the responsiveness of spatial logistics patterns to changes in these costs, using a quantitative model that links production and consumption points via distribution centers. The model is estimated to reproduce observed use of logistics facilities as well as related transport flows, for the case of the Netherlands. We apply the model to estimate the impacts of a number of scenarios on the spatial spreading of regional distribution activity, interregional vehicle movements and commodity flows. We estimate new cost elasticities, of the demand for trade and transport together, as well as specifically for the demand for the distribution facility services. The relatively low cost elasticity of transport services and high cost elasticity for the distribution services provide new insights for policy makers, relevant to understand the possible impacts of their policies on land use and freight flows.
DOCUMENT
Deze subsidieaanvraag richt zich op het onderzoeken van de hergebruikmogelijkheden van structuren van incourante kantoorgebouwen. Grofweg 10% van alle leegstaande kantoorgebouwen is incourant. De structuren van deze gebouwen (de constructies) zijn echter meestal niet incourant en in de meeste gevallen technisch niet verouderd. Deze structuren kunnen worden ingezet als dragers voor nieuwe ontwikkelingen die aansluiten op de groeiambities van de metropoolregio Amsterdam. Op deze manier kan de levenscyclus van deze structuren worden verlengd en kunnen de grondstofstromen voor constructiematerialen worden gereduceerd. Het werkveld geeft aan behoefte te hebben aan gedetailleerde technische gegevens over deze structuren en gedetailleerd inzicht in functiemogelijkheden om op basis daarvan scenario’s te ontwikkelen om tot verdienmodellen te komen. In samenwerking met ABT en ABC Nova wordt voor 15 casestudies binnen de metropoolregio Amsterdam de structuur geïnventariseerd. Vervolgens worden voor deze gebouwen de functiemogelijkheden onderzocht. Dit project leidt tot gedetailleerde kennis over bestaande structuren en vormt daarmee de eerste stap in een te ontwikkelen 4D structurenatlas met functiemogelijkheden. De beoogde uitkomsten kunnen dienen als randvoorwaarden voor vervolgonderzoek naar een groter aantal te onderzoeken structuren en functiemogelijkheden. Ook kan naar aanleiding hiervan worden ingezoomd op specifieke constructietypen en functies.
Many lithographically created optical components, such as photonic crystals, require the creation of periodically repeated structures [1]. The optical properties depend critically on the consistency of the shape and periodicity of the repeated structure. At the same time, the structure and its period may be similar to, or substantially below that of the optical diffraction limit, making inspection with optical microscopy difficult. Inspection tools must be able to scan an entire wafer (300 mm diameter), and identify wafers that fail to meet specifications rapidly. However, high resolution, and high throughput are often difficult to achieve simultaneously, and a compromise must be made. TeraNova is developing an optical inspection tool that can rapidly image features on wafers. Their product relies on (a) knowledge of what the features should be, and (b) a detailed and accurate model of light diffraction from the wafer surface. This combination allows deviations from features to be identified by modifying the model of the surface features until the calculated diffraction pattern matches the observed pattern. This form of microscopy—known as Fourier microscopy—has the potential to be very rapid and highly accurate. However, the solver, which calculates the wafer features from the diffraction pattern, must be very rapid and precise. To achieve this, a hardware solver will be implemented. The hardware solver must be combined with mechatronic tracking of the absolute wafer position, requiring the automatic identification of fiduciary markers. Finally, the problem of computer obsolescence in instrumentation (resulting in security weaknesses) will also be addressed by combining the digital hardware and software into a system-on-a-chip (SoC) to provide a powerful, yet secure operating environment for the microscope software.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.